After creating your AI agents, the next step is deploying them for use by yourself or others. In this final lesson, we’ll explore different deployment options and best practices.
For scalable, event-driven deployments, serverless functions work well:
# Example AWS Lambda functionimport jsonfrom praisonaiagents import Agent# Initialize agent outside the handler for reuse across invocationsagent = Agent( name="ServerlessAgent", instructions="You provide concise, helpful responses to user questions.", llm="gpt-4o-mini" # Using the specified model)def lambda_handler(event, context): try: # Get the user query from the event body = json.loads(event.get('body', '{}')) user_query = body.get('query', '') if not user_query: return { 'statusCode': 400, 'body': json.dumps({'error': 'No query provided'}) } # Process with the agent response = agent.start(user_query) return { 'statusCode': 200, 'body': json.dumps({'response': response}) } except Exception as e: return { 'statusCode': 500, 'body': json.dumps({'error': str(e)}) }
When deploying agents, it’s crucial to handle API keys and secrets securely:
import osfrom dotenv import load_dotenvfrom praisonaiagents import Agent# Load environment variables from .env fileload_dotenv()# Access API key from environment variableapi_key = os.getenv("OPENAI_API_KEY")# Create agent with API keyagent = Agent( name="SecureAgent", instructions="You are a helpful assistant.", llm="gpt-4o-mini", # Using the specified model api_key=api_key # Pass API key securely)
Here’s a simple command-line chat interface for your agent:
import osfrom praisonaiagents import Agentdef create_chat_interface(): # Initialize agent agent = Agent( name="ChatAgent", instructions=""" You are a conversational assistant that maintains context throughout the conversation. Respond in a helpful, concise manner. """, llm="gpt-4o-mini" # Using the specified model ) print("Chat with AI Assistant (type 'exit' to quit)") print("-" * 50) # Start conversation conversation_active = True first_message = True while conversation_active: # Get user input user_message = input("You: ") # Check if user wants to exit if user_message.lower() == 'exit': print("Goodbye!") conversation_active = False continue # Get agent response try: if first_message: response = agent.start(user_message) first_message = False else: response = agent.continue(user_message) print("\nAssistant:", response) print("\n" + "-" * 50) except Exception as e: print(f"Error: {str(e)}")if __name__ == "__main__": create_chat_interface()
Always test your agents thoroughly before deployment:
def test_agent_functionality(): """Test basic agent functionality with various inputs""" agent = Agent( name="TestAgent", instructions="You are a helpful assistant for testing.", llm="gpt-4o-mini" # Using the specified model ) test_cases = [ "What is artificial intelligence?", "How do I reset my password?", "Tell me about machine learning" ] for test_case in test_cases: print(f"\nTesting: {test_case}") response = agent.start(test_case) print(f"Response: {response[:100]}...") # Print first 100 chars # Add assertions or validation logic here assert len(response) > 0, "Response should not be empty"
Create clear documentation for users of your agent:
"""# Customer Support Agent APIThis API provides access to an AI customer support agentthat can answer questions about our products.## AuthenticationInclude your API key in the request header:
Authorization: Bearer YOUR_API_KEY
## EndpointsPOST /api/support- Request body: {"query": "Your question here"}- Response: {"response": "Agent's answer"}## Example```pythonimport requestsresponse = requests.post( "https://api.example.com/api/support", headers={"Authorization": "Bearer YOUR_API_KEY"}, json={"query": "How do I reset my password?"})print(response.json())
"""
### 3. Version ControlImplement version control for your agents to track changes:```pythonclass VersionedAgent: def __init__(self, name, version, instructions): self.name = name self.version = version self.agent = Agent( name=f"{name}_v{version}", instructions=instructions, llm="gpt-4o-mini" # Using the specified model ) def get_response(self, query): response = self.agent.start(query) return { "agent_name": self.name, "version": self.version, "response": response, "timestamp": datetime.now().isoformat() }
Congratulations on completing the AI Agents Course! You’ve learned how to:
Understand different types of AI agents and their architectures
Create effective agent instructions and tools
Implement memory and context for your agents
Build specialized agents for various tasks
Create multi-agent systems
Deploy your agents for real-world use
As AI agent technology continues to evolve, keep experimenting with new capabilities and use cases. Remember that the best agents are those that effectively solve real problems for users while being trustworthy, reliable, and helpful.
We hope this course has provided you with the knowledge and skills to build powerful AI agents that enhance productivity and creativity!