from praisonaiagents import Agent, Task, PraisonAIAgents
from pydantic import BaseModel
from typing import List, Dict
import os
import json
class ProjectEvaluation(BaseModel):
innovation_score: int # 0-100
technical_complexity: int # 0-100
presentation_quality: int # 0-100
user_experience: int # 0-100
completeness: int # 0-100
overall_score: int # 0-100
key_strengths: List[str]
areas_for_improvement: List[str]
notable_features: List[str]
technical_highlights: List[str]
recommendations: List[str]
market_potential: str
scalability_assessment: str
# Create Vision Analysis Agent
hackathon_judge = Agent(
name="HackathonJudge",
role="Technical Project Evaluator",
goal="Evaluate hackathon projects through video demonstrations",
backstory="""You are an experienced hackathon judge and technical expert.
You excel at evaluating innovation, technical implementation, and presentation quality.
You provide constructive feedback and identify both strengths and areas for improvement.""",
llm="gpt-4o-mini", # Using vision-capable model
self_reflect=False,
knowledge=""
)
def evaluate_project(video_path: str) -> ProjectEvaluation:
"""
Evaluate a hackathon project based on its video demonstration
"""
evaluation_task = Task(
name="project_evaluation",
description="""Analyze this hackathon project video demonstration and provide a comprehensive evaluation:
1. Score the following aspects (0-100):
- Innovation and Creativity
- Technical Complexity
- Presentation Quality
- User Experience
- Project Completeness
2. Identify:
- Key strengths and standout features
- Areas that could be improved
- Notable technical implementations
- Market potential and scalability
3. Provide:
- Specific recommendations for improvement
- Technical suggestions
- Potential future enhancements""",
expected_output="Detailed project evaluation with scores and feedback",
agent=hackathon_judge,
output_pydantic=ProjectEvaluation,
images=[video_path] # Video input for multimodal analysis
)
# Initialize and run evaluation
agents = PraisonAIAgents(
agents=[hackathon_judge],
tasks=[evaluation_task],
process="sequential",
verbose=True
)
response = agents.start()
try:
# If response contains task_results, extract the Pydantic model directly
if isinstance(response, dict) and 'task_results' in response:
task_output = response['task_results'][0]
if hasattr(task_output, 'pydantic'):
return task_output.pydantic
elif hasattr(task_output, 'raw'):
# Extract JSON from raw string if it's wrapped in ```json
raw_text = task_output.raw
if raw_text.startswith('```json'):
raw_text = raw_text.split('\n', 1)[1].rsplit('\n', 1)[0]
evaluation_data = json.loads(raw_text)
else:
evaluation_data = json.loads(task_output) if isinstance(task_output, str) else task_output
# If response is a string, try to parse it as JSON
elif isinstance(response, str):
evaluation_data = json.loads(response)
# If response is a dict with task_status
elif isinstance(response, dict) and 'task_status' in response:
content = response['task_status']
if isinstance(content, dict):
evaluation_data = content
else:
evaluation_data = json.loads(content) if isinstance(content, str) else content
else:
evaluation_data = response
print(f"Debug - Parsed evaluation_data: {evaluation_data}")
# Create and return ProjectEvaluation instance
return ProjectEvaluation(
innovation_score=int(evaluation_data.get('innovation_score', 0)),
technical_complexity=int(evaluation_data.get('technical_complexity', 0)),
presentation_quality=int(evaluation_data.get('presentation_quality', 0)),
user_experience=int(evaluation_data.get('user_experience', 0)),
completeness=int(evaluation_data.get('completeness', 0)),
overall_score=int(evaluation_data.get('overall_score', 0)),
key_strengths=evaluation_data.get('key_strengths', []),
areas_for_improvement=evaluation_data.get('areas_for_improvement', []),
notable_features=evaluation_data.get('notable_features', []),
technical_highlights=evaluation_data.get('technical_highlights', []),
recommendations=evaluation_data.get('recommendations', []),
market_potential=str(evaluation_data.get('market_potential', '')),
scalability_assessment=str(evaluation_data.get('scalability_assessment', ''))
)
except Exception as e:
print(f"Debug - Raw response: {response}")
print(f"Error processing response: {e}")
raise
if __name__ == "__main__":
# Example usage
current_dir = os.path.dirname(os.path.abspath(__file__))
video_path = os.path.join(current_dir, "presentation.mp4")
result = evaluate_project(video_path) # Now returns ProjectEvaluation directly
print("\nHackathon Project Evaluation")
print("===========================")
print(f"\nOverall Score: {result.overall_score}/100")
print("\nDetailed Scores:")
print(f"Innovation: {result.innovation_score}/100")
print(f"Technical Complexity: {result.technical_complexity}/100")
print(f"Presentation: {result.presentation_quality}/100")
print(f"User Experience: {result.user_experience}/100")
print(f"Completeness: {result.completeness}/100")
print("\nKey Strengths:")
for strength in result.key_strengths:
print(f"- {strength}")
print("\nAreas for Improvement:")
for area in result.areas_for_improvement:
print(f"- {area}")
print("\nTechnical Highlights:")
for highlight in result.technical_highlights:
print(f"- {highlight}")
print("\nRecommendations:")
for rec in result.recommendations:
print(f"- {rec}")
print(f"\nMarket Potential: {result.market_potential}")
print(f"\nScalability Assessment: {result.scalability_assessment}")