Skip to main content

Overview

Qdrant is a vector similarity search engine. Use it for semantic search, recommendations, and RAG applications.

Installation

pip install "praisonai[tools]"

Environment Variables

export QDRANT_URL=http://localhost:6333
export QDRANT_API_KEY=your_api_key  # Optional for cloud

Quick Start

from praisonai_tools import QdrantTool

# Initialize
qdrant = QdrantTool(url="http://localhost:6333")

# Search
results = qdrant.search("products", query_vector=[0.1, 0.2, ...], limit=5)
print(results)

Usage with Agent

from praisonaiagents import Agent
from praisonai_tools import QdrantTool

qdrant = QdrantTool(url="http://localhost:6333")

agent = Agent(
    name="SearchAgent",
    instructions="You perform semantic search using Qdrant.",
    tools=[qdrant]
)

response = agent.chat("Find similar products to item 123")
print(response)

Available Methods

search(collection, query_vector, limit=10)

Search for similar vectors.
from praisonai_tools import QdrantTool

qdrant = QdrantTool(url="http://localhost:6333")
results = qdrant.search("documents", query_vector=[0.1, 0.2, 0.3], limit=5)

upsert(collection, points)

Insert or update points.
qdrant.upsert("documents", [
    {"id": 1, "vector": [0.1, 0.2, 0.3], "payload": {"text": "Hello"}}
])

create_collection(name, vector_size)

Create a new collection.
qdrant.create_collection("my_collection", vector_size=384)

Docker Setup

docker run -d --name qdrant \
    -p 6333:6333 \
    qdrant/qdrant

Common Errors

ErrorCauseSolution
qdrant-client not installedMissing dependencyRun pip install qdrant-client
Connection refusedQdrant not runningStart Qdrant server
Collection not foundCollection doesn’t existCreate collection first