import streamlit as st
import os
from praisonaiagents import Agent, Task, PraisonAIAgents
from pydantic import BaseModel
from typing import List, Dict
import tempfile
import json
class ProjectEvaluation(BaseModel):
innovation_score: int # 0-100
technical_complexity: int # 0-100
presentation_quality: int # 0-100
user_experience: int # 0-100
completeness: int # 0-100
overall_score: int # 0-100
key_strengths: List[str]
areas_for_improvement: List[str]
notable_features: List[str]
technical_highlights: List[str]
recommendations: List[str]
market_potential: str
scalability_assessment: str
# Set page config
st.set_page_config(
page_title="Hackathon Project Evaluator",
page_icon="🏆",
layout="wide"
)
# Create Vision Analysis Agent
@st.cache_resource
def get_hackathon_judge():
return Agent(
name="HackathonJudge",
role="Technical Project Evaluator",
goal="Evaluate hackathon projects through video demonstrations",
backstory="""You are an experienced hackathon judge and technical expert.
You excel at evaluating innovation, technical implementation, and presentation quality.
You provide constructive feedback and identify both strengths and areas for improvement.""",
llm="gpt-4o-mini", # Using vision-capable model
self_reflect=False,
knowledge=""
)
def evaluate_project(video_path: str) -> ProjectEvaluation:
"""
Evaluate a hackathon project based on its video demonstration
"""
hackathon_judge = get_hackathon_judge()
evaluation_task = Task(
name="project_evaluation",
description="""Analyze this hackathon project video demonstration and provide a comprehensive evaluation:
1. Score the following aspects (0-100):
- Innovation and Creativity
- Technical Complexity
- Presentation Quality
- User Experience
- Project Completeness
2. Identify:
- Key strengths and standout features
- Areas that could be improved
- Notable technical implementations
- Market potential and scalability
3. Provide:
- Specific recommendations for improvement
- Technical suggestions
- Potential future enhancements""",
expected_output="Detailed project evaluation with scores and feedback",
agent=hackathon_judge,
output_pydantic=ProjectEvaluation,
images=[video_path] # Video input for multimodal analysis
)
# Initialize and run evaluation
agents = PraisonAIAgents(
agents=[hackathon_judge],
tasks=[evaluation_task],
process="sequential",
verbose=True
)
response = agents.start()
try:
# If response contains task_results, extract the Pydantic model directly
if isinstance(response, dict) and 'task_results' in response:
task_output = response['task_results'][0]
if hasattr(task_output, 'pydantic'):
return task_output.pydantic
elif hasattr(task_output, 'raw'):
# Extract JSON from raw string if it's wrapped in ```json
raw_text = task_output.raw
if raw_text.startswith('```json'):
raw_text = raw_text.split('\n', 1)[1].rsplit('\n', 1)[0]
evaluation_data = json.loads(raw_text)
else:
evaluation_data = json.loads(task_output) if isinstance(task_output, str) else task_output
elif isinstance(response, str):
evaluation_data = json.loads(response)
elif isinstance(response, dict) and 'task_status' in response:
content = response['task_status']
if isinstance(content, dict):
evaluation_data = content
else:
evaluation_data = json.loads(content) if isinstance(content, str) else content
else:
evaluation_data = response
# Create and return ProjectEvaluation instance
return ProjectEvaluation(
innovation_score=int(evaluation_data.get('innovation_score', 0)),
technical_complexity=int(evaluation_data.get('technical_complexity', 0)),
presentation_quality=int(evaluation_data.get('presentation_quality', 0)),
user_experience=int(evaluation_data.get('user_experience', 0)),
completeness=int(evaluation_data.get('completeness', 0)),
overall_score=int(evaluation_data.get('overall_score', 0)),
key_strengths=evaluation_data.get('key_strengths', []),
areas_for_improvement=evaluation_data.get('areas_for_improvement', []),
notable_features=evaluation_data.get('notable_features', []),
technical_highlights=evaluation_data.get('technical_highlights', []),
recommendations=evaluation_data.get('recommendations', []),
market_potential=str(evaluation_data.get('market_potential', '')),
scalability_assessment=str(evaluation_data.get('scalability_assessment', ''))
)
except Exception as e:
print(f"Debug - Raw response: {response}")
print(f"Error processing response: {e}")
raise
# Title and description
st.title("🏆 Hackathon Judge Agent")
st.markdown("""
Upload your hackathon project demonstration video for an AI-powered evaluation.
Get comprehensive feedback on various aspects of your project.
""")
# File uploader
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov', 'mkv'])
if uploaded_file:
# Create a temporary file to store the video
with tempfile.NamedTemporaryFile(delete=False, suffix='.'+uploaded_file.name.split('.')[-1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
video_path = tmp_file.name
with st.spinner("🤖 AI is evaluating your project..."):
try:
# Evaluate the project
result = evaluate_project(video_path)
# Display results
st.header("Overall Score")
st.metric("Overall Score", f"{result.overall_score}/100")
# Display detailed scores
st.header("Detailed Scores")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Innovation", f"{result.innovation_score}/100")
st.metric("Technical Complexity", f"{result.technical_complexity}/100")
with col2:
st.metric("Presentation", f"{result.presentation_quality}/100")
st.metric("User Experience", f"{result.user_experience}/100")
with col3:
st.metric("Completeness", f"{result.completeness}/100")
# Display qualitative feedback
st.header("Key Strengths")
for strength in result.key_strengths:
st.write(f"• {strength}")
st.header("Areas for Improvement")
for area in result.areas_for_improvement:
st.write(f"• {area}")
st.header("Technical Highlights")
for highlight in result.technical_highlights:
st.write(f"• {highlight}")
st.header("Notable Features")
for feature in result.notable_features:
st.write(f"• {feature}")
st.header("Recommendations")
for rec in result.recommendations:
st.write(f"• {rec}")
# Market Analysis
st.header("Market Analysis")
col1, col2 = st.columns(2)
with col1:
st.subheader("Market Potential")
st.write(result.market_potential)
with col2:
st.subheader("Scalability Assessment")
st.write(result.scalability_assessment)
except Exception as e:
st.error(f"Error evaluating the project: {str(e)}")
finally:
# Clean up the temporary file
os.unlink(video_path)
else:
# Display placeholder content
st.info("👆 Upload a video file to get started!")