What is Climate Impact Analysis?

Climate Impact Analysis is a systematic process of collecting environmental data, analyzing urban factors, modeling microclimates, predicting impacts, and generating adaptation strategies. This helps cities and communities understand and prepare for climate change effects, ensuring sustainable urban development and public health.

Features

Environmental Monitoring

Collection of temperature, humidity, and air quality data with trend analysis.

Urban Analysis

Assessment of building density, green spaces, traffic flow, and heat islands.

Climate Modeling

Microclimate modeling for different urban locations with temperature and air quality impacts.

Impact Prediction

Prediction of health impacts, energy consumption, and livability scores.

Adaptation Strategies

Generation of location-specific strategies for climate adaptation.

Quick Start

1

Install Package

First, install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Key

Set your OpenAI API key as an environment variable in your terminal:

export OPENAI_API_KEY=your_api_key_here
3

Create a file

Create a new file app.py with the basic setup:

from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio

def collect_environmental_data():
    """Simulates environmental data collection"""
    data = {
        "temperature": {
            "current": 25 + (time.time() % 10),
            "historical": [24, 25, 26, 24, 23],
            "trend": "increasing"
        },
        "humidity": {
            "current": 60 + (time.time() % 20),
            "historical": [65, 62, 58, 63, 61],
            "trend": "stable"
        },
        "air_quality": {
            "pm25": 35 + (time.time() % 15),
            "co2": 415 + (time.time() % 30),
            "trend": "deteriorating"
        }
    }
    return data

def analyze_urban_factors():
    """Simulates urban environment analysis"""
    factors = {
        "building_density": 75 + (time.time() % 20),
        "green_spaces": 25 + (time.time() % 10),
        "traffic_flow": {
            "peak_hours": [8, 17],
            "congestion_level": "high"
        },
        "heat_islands": [
            {"location": "downtown", "intensity": "high"},
            {"location": "industrial", "intensity": "medium"}
        ]
    }
    return factors

def model_microclimate(env_data: Dict, urban_factors: Dict):
    """Models microclimate conditions"""
    models = []
    locations = ["downtown", "residential", "industrial", "parks"]
    
    for location in locations:
        models.append({
            "location": location,
            "temperature_delta": 2 + (time.time() % 3),
            "air_quality_impact": "moderate" if "park" in location else "significant",
            "humidity_variation": 5 + (time.time() % 5)
        })
    return models

def predict_impacts(models: List[Dict]):
    """Predicts climate impacts"""
    predictions = []
    for model in models:
        predictions.append({
            "location": model["location"],
            "health_impact": "high" if model["air_quality_impact"] == "significant" else "medium",
            "energy_consumption": {
                "cooling_need": model["temperature_delta"] * 10,
                "trend": "increasing" if model["temperature_delta"] > 2.5 else "stable"
            },
            "livability_score": 70 - (model["temperature_delta"] * 5)
        })
    return predictions

def generate_adaptation_strategies(predictions: List[Dict]):
    """Generates adaptation strategies"""
    strategies = []
    for pred in predictions:
        if pred["health_impact"] == "high":
            strategies.append({
                "location": pred["location"],
                "actions": [
                    "increase_green_spaces",
                    "traffic_reduction",
                    "building_retrofitting"
                ],
                "priority": "immediate",
                "cost_estimate": "high"
            })
        else:
            strategies.append({
                "location": pred["location"],
                "actions": [
                    "tree_planting",
                    "cool_roofs"
                ],
                "priority": "medium",
                "cost_estimate": "moderate"
            })
    return strategies

# Create specialized agents
environmental_monitor = Agent(
    name="Environmental Monitor",
    role="Data Collection",
    goal="Collect environmental data",
    instructions="Monitor and collect climate data",
    tools=[collect_environmental_data]
)

urban_analyzer = Agent(
    name="Urban Analyzer",
    role="Urban Analysis",
    goal="Analyze urban environment",
    instructions="Assess urban factors affecting climate",
    tools=[analyze_urban_factors]
)

climate_modeler = Agent(
    name="Climate Modeler",
    role="Climate Modeling",
    goal="Model microclimate conditions",
    instructions="Create detailed climate models",
    tools=[model_microclimate]
)

impact_predictor = Agent(
    name="Impact Predictor",
    role="Impact Analysis",
    goal="Predict climate impacts",
    instructions="Assess potential climate impacts",
    tools=[predict_impacts]
)

strategy_generator = Agent(
    name="Strategy Generator",
    role="Strategy Development",
    goal="Generate adaptation strategies",
    instructions="Develop climate adaptation strategies",
    tools=[generate_adaptation_strategies]
)

# Create workflow tasks
monitoring_task = Task(
    name="collect_data",
    description="Collect environmental data",
    expected_output="Environmental measurements",
    agent=environmental_monitor,
    is_start=True,
    next_tasks=["analyze_urban"]
)

urban_task = Task(
    name="analyze_urban",
    description="Analyze urban factors",
    expected_output="Urban analysis",
    agent=urban_analyzer,
    next_tasks=["model_climate"]
)

modeling_task = Task(
    name="model_climate",
    description="Model microclimate",
    expected_output="Climate models",
    agent=climate_modeler,
    context=[monitoring_task, urban_task],
    next_tasks=["predict_impacts"]
)

prediction_task = Task(
    name="predict_impacts",
    description="Predict climate impacts",
    expected_output="Impact predictions",
    agent=impact_predictor,
    next_tasks=["generate_strategies"]
)

strategy_task = Task(
    name="generate_strategies",
    description="Generate adaptation strategies",
    expected_output="Adaptation strategies",
    agent=strategy_generator,
    task_type="decision",
    condition={
        "immediate": ["collect_data"],  # Continuous monitoring for high priority
        "medium": "",  # End workflow for medium priority
        "low": ""  # End workflow for low priority
    }
)

# Create workflow
workflow = PraisonAIAgents(
    agents=[environmental_monitor, urban_analyzer, climate_modeler,
            impact_predictor, strategy_generator],
    tasks=[monitoring_task, urban_task, modeling_task,
           prediction_task, strategy_task],
    process="workflow",
    verbose=True
)

async def main():
    print("\nStarting Climate Impact Prediction Workflow...")
    print("=" * 50)
    
    # Run workflow
    results = await workflow.astart()
    
    # Print results
    print("\nClimate Impact Analysis Results:")
    print("=" * 50)
    for task_id, result in results["task_results"].items():
        if result:
            print(f"\nTask: {task_id}")
            print(f"Result: {result.raw}")
            print("-" * 50)

if __name__ == "__main__":
    asyncio.run(main())

Next Steps

Was this page helpful?