What is DeFi Market Making?

Decentralized Finance (DeFi) market making involves providing liquidity to decentralized exchanges and automatically executing trades to capture arbitrage opportunities. This requires real-time analysis of market conditions, optimization of liquidity positions, and risk management.

Features

Market Analysis

Real-time analysis of liquidity pools, market volatility, trading volumes, and gas prices.

Arbitrage Detection

Identification of profitable trading opportunities across different liquidity pools.

Liquidity Optimization

Optimization of liquidity distribution and pool ratios for maximum efficiency.

Risk Assessment

Comprehensive risk analysis including impermanent loss and smart contract risks.

Trade Execution

Automated execution of optimized trades with performance monitoring.

Quick Start

1

Install Package

First, install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Key

Set your OpenAI API key as an environment variable in your terminal:

export OPENAI_API_KEY=your_api_key_here
3

Create a file

Create a new file app.py with the basic setup:

from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio

def analyze_market_conditions():
    """Simulates market analysis"""
    conditions = {
        "liquidity_pools": {
            "pool_A": {
                "token_0": {"balance": 1000000, "price": 1.0},
                "token_1": {"balance": 500000, "price": 2.0},
                "total_value_locked": 2000000
            },
            "pool_B": {
                "token_0": {"balance": 800000, "price": 1.0},
                "token_1": {"balance": 400000, "price": 2.0},
                "total_value_locked": 1600000
            }
        },
        "market_volatility": 0.15 + (time.time() % 10) / 100,
        "trading_volume_24h": 5000000 + (time.time() % 1000000),
        "gas_prices": 50 + (time.time() % 30)
    }
    return conditions

def detect_arbitrage():
    """Simulates arbitrage opportunity detection"""
    opportunities = [
        {
            "path": ["pool_A", "pool_B"],
            "profit_potential": 0.02 + (time.time() % 5) / 100,
            "required_capital": 10000,
            "execution_cost": 50,
            "risk_level": "low"
        },
        {
            "path": ["pool_B", "pool_C"],
            "profit_potential": 0.03 + (time.time() % 5) / 100,
            "required_capital": 20000,
            "execution_cost": 75,
            "risk_level": "medium"
        }
    ]
    return opportunities[int(time.time()) % 2]

def optimize_liquidity(market_conditions: Dict):
    """Optimizes liquidity distribution"""
    optimizations = {
        "pool_A": {
            "target_ratio": 2.0,
            "suggested_actions": [
                {
                    "action": "rebalance",
                    "token": "token_1",
                    "amount": 10000,
                    "direction": "add"
                }
            ],
            "expected_improvement": 0.05
        },
        "pool_B": {
            "target_ratio": 1.8,
            "suggested_actions": [
                {
                    "action": "rebalance",
                    "token": "token_0",
                    "amount": 5000,
                    "direction": "remove"
                }
            ],
            "expected_improvement": 0.03
        }
    }
    return optimizations

def assess_risks(arbitrage: Dict, optimizations: Dict):
    """Assesses potential risks"""
    risk_assessment = {
        "impermanent_loss_risk": 0.1 + (time.time() % 5) / 100,
        "smart_contract_risk": "low",
        "market_manipulation_risk": "medium" if arbitrage["profit_potential"] > 0.025 else "low",
        "gas_price_risk": "high" if arbitrage["execution_cost"] > 60 else "medium",
        "mitigation_strategies": [
            "implement_slippage_protection",
            "set_maximum_gas_price",
            "use_multiple_liquidity_sources"
        ]
    }
    return risk_assessment

def execute_trades(arbitrage: Dict, risks: Dict):
    """Simulates trade execution"""
    execution_results = {
        "status": "success" if time.time() % 2 == 0 else "failed",
        "executed_volume": arbitrage["required_capital"] * 0.95,
        "actual_profit": arbitrage["profit_potential"] * 0.9,
        "gas_used": arbitrage["execution_cost"] * 1.1,
        "timestamp": time.time()
    }
    return execution_results

# Create specialized agents
market_analyzer = Agent(
    name="Market Analyzer",
    role="Market Analysis",
    goal="Analyze market conditions",
    instructions="Monitor and analyze DeFi market conditions",
    tools=[analyze_market_conditions]
)

arbitrage_detector = Agent(
    name="Arbitrage Detector",
    role="Arbitrage Detection",
    goal="Detect arbitrage opportunities",
    instructions="Identify profitable trading opportunities",
    tools=[detect_arbitrage]
)

liquidity_optimizer = Agent(
    name="Liquidity Optimizer",
    role="Liquidity Optimization",
    goal="Optimize liquidity distribution",
    instructions="Optimize pool liquidity ratios",
    tools=[optimize_liquidity]
)

risk_assessor = Agent(
    name="Risk Assessor",
    role="Risk Assessment",
    goal="Assess trading risks",
    instructions="Evaluate potential risks and mitigation strategies",
    tools=[assess_risks]
)

trade_executor = Agent(
    name="Trade Executor",
    role="Trade Execution",
    goal="Execute optimized trades",
    instructions="Execute trades based on analysis",
    tools=[execute_trades]
)

# Create workflow tasks
market_task = Task(
    name="analyze_market",
    description="Analyze market conditions",
    expected_output="Market analysis",
    agent=market_analyzer,
    is_start=True,
    next_tasks=["detect_arbitrage", "optimize_liquidity"]
)

arbitrage_task = Task(
    name="detect_arbitrage",
    description="Detect arbitrage opportunities",
    expected_output="Arbitrage opportunities",
    agent=arbitrage_detector,
    next_tasks=["assess_risks"]
)

liquidity_task = Task(
    name="optimize_liquidity",
    description="Optimize liquidity",
    expected_output="Liquidity optimization",
    agent=liquidity_optimizer,
    context=[market_task],
    next_tasks=["assess_risks"]
)

risk_task = Task(
    name="assess_risks",
    description="Assess trading risks",
    expected_output="Risk assessment",
    agent=risk_assessor,
    context=[arbitrage_task, liquidity_task],
    next_tasks=["execute_trades"]
)

execution_task = Task(
    name="execute_trades",
    description="Execute trades",
    expected_output="Trade execution results",
    agent=trade_executor,
    task_type="decision",
    condition={
        "success": ["analyze_market"],  # Continue monitoring if successful
        "failed": ["optimize_liquidity"]  # Reoptimize if failed
    }
)

# Create workflow
workflow = PraisonAIAgents(
    agents=[market_analyzer, arbitrage_detector, liquidity_optimizer,
            risk_assessor, trade_executor],
    tasks=[market_task, arbitrage_task, liquidity_task,
           risk_task, execution_task],
    process="workflow",
    verbose=True
)

async def main():
    print("\nStarting DeFi Market Making Workflow...")
    print("=" * 50)
    
    # Run workflow
    results = await workflow.astart()
    
    # Print results
    print("\nMarket Making Results:")
    print("=" * 50)
    for task_id, result in results["task_results"].items():
        if result:
            print(f"\nTask: {task_id}")
            print(f"Result: {result.raw}")
            print("-" * 50)

if __name__ == "__main__":
    asyncio.run(main())

Next Steps

Was this page helpful?