What is Personalized Medicine?
Personalized medicine is an approach that tailors medical treatment to individual characteristics of each patient. It involves analyzing genetic markers, patient history, and drug interactions to create optimized treatment protocols.Features
Genetic Analysis
Deep analysis of genetic markers including metabolism genes, risk factors, and drug response markers.
Patient History
Comprehensive evaluation of medical conditions, medications, allergies, and family history.
Drug Interaction
Analysis of potential drug interactions based on genetic data and patient history.
Protocol Generation
Creation of personalized treatment protocols with dosage adjustments and monitoring plans.
Treatment Simulation
Prediction of treatment effectiveness, side effects, and adherence probability.
Quick Start
1
Install Package
First, install the PraisonAI Agents package:
Copy
pip install praisonaiagents
2
Set API Key
Set your OpenAI API key as an environment variable in your terminal:
Copy
export OPENAI_API_KEY=your_api_key_here
3
Create a file
Create a new file
app.py
with the basic setup:Copy
from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio
def analyze_genetic_markers():
"""Simulates genetic marker analysis"""
markers = {
"metabolism_genes": {
"CYP2D6": "rapid_metabolizer",
"CYP2C19": "normal_metabolizer",
"DPYD": "poor_metabolizer"
},
"risk_factors": {
"cardiovascular": "elevated",
"diabetes": "low",
"autoimmune": "moderate"
},
"drug_response_markers": {
"TPMT": "high_sensitivity",
"HLA-B*5701": "negative",
"UGT1A1": "normal"
}
}
return markers
def evaluate_patient_history():
"""Simulates patient history evaluation"""
history = {
"conditions": [
{"name": "hypertension", "duration": "5_years", "severity": "moderate"},
{"name": "arthritis", "duration": "2_years", "severity": "mild"}
],
"medications": [
{"name": "lisinopril", "response": "good", "side_effects": "minimal"},
{"name": "methotrexate", "response": "moderate", "side_effects": "mild"}
],
"allergies": ["penicillin", "sulfa"],
"family_history": ["diabetes", "heart_disease"]
}
return history
def analyze_drug_interactions(genetic_data: Dict, patient_history: Dict):
"""Analyzes potential drug interactions"""
interactions = []
medications = [med["name"] for med in patient_history["medications"]]
for med in medications:
interactions.append({
"medication": med,
"genetic_impact": "significant" if genetic_data["metabolism_genes"]["CYP2D6"] == "rapid_metabolizer" else "normal",
"risk_level": "high" if med in patient_history["allergies"] else "low",
"monitoring_needed": True if genetic_data["metabolism_genes"]["DPYD"] == "poor_metabolizer" else False
})
return interactions
def generate_protocol(genetic_data: Dict, interactions: List[Dict]):
"""Generates treatment protocol"""
protocol = {
"primary_treatment": {
"medication": "custom_formulation_A",
"dosage": "adjusted_based_on_metabolism",
"frequency": "twice_daily",
"monitoring": {
"type": "blood_levels",
"frequency": "weekly"
}
},
"alternatives": [
{
"medication": "custom_formulation_B",
"conditions": ["genetic_compatibility", "no_interactions"]
}
],
"precautions": []
}
if genetic_data["metabolism_genes"]["CYP2D6"] == "rapid_metabolizer":
protocol["precautions"].append("increase_monitoring_frequency")
if any(i["risk_level"] == "high" for i in interactions):
protocol["precautions"].append("alternative_medication_needed")
return protocol
def simulate_effectiveness(protocol: Dict):
"""Simulates treatment effectiveness"""
simulation = {
"efficacy_prediction": 0.85 + (time.time() % 2) / 10,
"side_effect_risk": 0.15 + (time.time() % 1) / 10,
"adherence_probability": 0.9 + (time.time() % 1) / 10,
"expected_outcomes": [
"symptom_reduction_80_percent",
"minimal_side_effects",
"good_tolerance"
]
}
return simulation
# Create specialized agents
genetic_analyzer = Agent(
name="Genetic Analyzer",
role="Genetic Analysis",
goal="Analyze genetic markers",
instructions="Evaluate genetic markers and variants",
tools=[analyze_genetic_markers]
)
history_analyzer = Agent(
name="History Analyzer",
role="History Analysis",
goal="Analyze patient history",
instructions="Evaluate medical history and conditions",
tools=[evaluate_patient_history]
)
interaction_analyzer = Agent(
name="Interaction Analyzer",
role="Drug Interaction",
goal="Analyze drug interactions",
instructions="Evaluate potential drug interactions",
tools=[analyze_drug_interactions]
)
protocol_generator = Agent(
name="Protocol Generator",
role="Protocol Generation",
goal="Generate treatment protocol",
instructions="Create personalized treatment protocol",
tools=[generate_protocol]
)
effectiveness_simulator = Agent(
name="Effectiveness Simulator",
role="Treatment Simulation",
goal="Simulate treatment effectiveness",
instructions="Predict treatment outcomes",
tools=[simulate_effectiveness]
)
# Create workflow tasks
genetic_task = Task(
name="analyze_genetics",
description="Analyze genetic markers",
expected_output="Genetic analysis",
agent=genetic_analyzer,
is_start=True,
next_tasks=["analyze_history"]
)
history_task = Task(
name="analyze_history",
description="Analyze patient history",
expected_output="History analysis",
agent=history_analyzer,
next_tasks=["analyze_interactions"]
)
interaction_task = Task(
name="analyze_interactions",
description="Analyze drug interactions",
expected_output="Interaction analysis",
agent=interaction_analyzer,
context=[genetic_task, history_task],
next_tasks=["generate_protocol"]
)
protocol_task = Task(
name="generate_protocol",
description="Generate treatment protocol",
expected_output="Treatment protocol",
agent=protocol_generator,
context=[genetic_task, interaction_task],
next_tasks=["simulate_effectiveness"]
)
simulation_task = Task(
name="simulate_effectiveness",
description="Simulate treatment effectiveness",
expected_output="Effectiveness simulation",
agent=effectiveness_simulator,
task_type="decision",
condition={
"high": "", # End workflow if high effectiveness
"medium": ["generate_protocol"], # Adjust protocol if medium
"low": ["analyze_interactions"] # Reanalyze if low
}
)
# Create workflow
workflow = PraisonAIAgents(
agents=[genetic_analyzer, history_analyzer, interaction_analyzer,
protocol_generator, effectiveness_simulator],
tasks=[genetic_task, history_task, interaction_task,
protocol_task, simulation_task],
process="workflow",
verbose=True
)
async def main():
print("\nStarting Personalized Medicine Protocol Generation...")
print("=" * 50)
# Run workflow
results = await workflow.astart()
# Print results
print("\nProtocol Generation Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
print(f"\nTask: {task_id}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
asyncio.run(main())