Neural Architecture Search (NAS) is an automated process for designing optimal neural network architectures. It involves analyzing hardware constraints, generating candidate architectures, optimizing hyperparameters, and configuring deployment settings to create efficient and performant models.

Features

Hardware Analysis

Analysis of GPU memory, compute capability, bandwidth, and thermal constraints.

Architecture Generation

Creation of candidate architectures including transformers and CNNs with optimized structures.

Hyperparameter Tuning

Optimization of learning rates, batch sizes, optimizers, and regularization parameters.

Performance Estimation

Prediction of model accuracy, training time, memory requirements, and FLOPS.

Deployment Optimization

Configuration of quantization, pruning, and batching for efficient deployment.

Quick Start

1

Install Package

First, install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Key

Set your OpenAI API key as an environment variable in your terminal:

export OPENAI_API_KEY=your_api_key_here
3

Create a file

Create a new file app.py with the basic setup:

from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio

def analyze_hardware_constraints():
    """Simulates hardware analysis"""
    constraints = {
        "gpu_memory": 16 * 1024,  # MB
        "compute_capability": "7.5",
        "memory_bandwidth": 900,  # GB/s
        "tensor_cores": True,
        "max_power_consumption": 300,  # Watts
        "thermal_limits": 85  # Celsius
    }
    return constraints

def generate_architecture_candidates():
    """Generates candidate architectures"""
    candidates = [
        {
            "type": "transformer",
            "layers": 12 + (int(time.time()) % 6),
            "attention_heads": 8,
            "embedding_dim": 512,
            "estimated_params": 125_000_000
        },
        {
            "type": "cnn",
            "layers": 50 + (int(time.time()) % 50),
            "filters": [64, 128, 256, 512],
            "estimated_params": 25_000_000
        }
    ]
    return candidates[int(time.time()) % 2]

def optimize_hyperparameters(architecture: Dict):
    """Optimizes hyperparameters"""
    optimization = {
        "learning_rate": 0.001 + (time.time() % 9) / 10000,
        "batch_size": 32 * (1 + int(time.time()) % 4),
        "optimizer": "adam",
        "weight_decay": 0.0001,
        "dropout_rate": 0.1 + (time.time() % 3) / 10,
        "activation": "gelu" if architecture["type"] == "transformer" else "relu"
    }
    return optimization

def estimate_performance(architecture: Dict, hyperparams: Dict):
    """Estimates model performance"""
    performance = {
        "estimated_accuracy": 0.85 + (time.time() % 10) / 100,
        "estimated_training_time": {
            "hours": 24 + (int(time.time()) % 24),
            "gpu_hours": 96
        },
        "memory_requirements": {
            "training": architecture["estimated_params"] * 4 / (1024 * 1024),  # GB
            "inference": architecture["estimated_params"] * 2 / (1024 * 1024)  # GB
        },
        "flops_count": architecture["estimated_params"] * 2
    }
    return performance

def optimize_deployment(architecture: Dict, performance: Dict):
    """Optimizes deployment configuration"""
    deployment = {
        "quantization": {
            "method": "dynamic",
            "precision": "int8",
            "estimated_speedup": 2.5
        },
        "pruning": {
            "method": "magnitude",
            "target_sparsity": 0.3,
            "estimated_size_reduction": 0.6
        },
        "batching": {
            "max_batch_size": 32,
            "dynamic_batching": True
        }
    }
    return deployment

# Create specialized agents
hardware_analyzer = Agent(
    name="Hardware Analyzer",
    role="Hardware Analysis",
    goal="Analyze hardware constraints",
    instructions="Evaluate available hardware resources",
    tools=[analyze_hardware_constraints]
)

architecture_generator = Agent(
    name="Architecture Generator",
    role="Architecture Generation",
    goal="Generate neural architectures",
    instructions="Create candidate neural architectures",
    tools=[generate_architecture_candidates]
)

hyperparameter_optimizer = Agent(
    name="Hyperparameter Optimizer",
    role="Hyperparameter Optimization",
    goal="Optimize hyperparameters",
    instructions="Find optimal hyperparameter settings",
    tools=[optimize_hyperparameters]
)

performance_estimator = Agent(
    name="Performance Estimator",
    role="Performance Estimation",
    goal="Estimate model performance",
    instructions="Predict model performance metrics",
    tools=[estimate_performance]
)

deployment_optimizer = Agent(
    name="Deployment Optimizer",
    role="Deployment Optimization",
    goal="Optimize deployment settings",
    instructions="Configure optimal deployment",
    tools=[optimize_deployment]
)

# Create workflow tasks
hardware_task = Task(
    name="analyze_hardware",
    description="Analyze hardware constraints",
    expected_output="Hardware analysis",
    agent=hardware_analyzer,
    is_start=True,
    next_tasks=["generate_architecture"]
)

architecture_task = Task(
    name="generate_architecture",
    description="Generate architecture candidates",
    expected_output="Architecture candidates",
    agent=architecture_generator,
    next_tasks=["optimize_hyperparameters"]
)

hyperparameter_task = Task(
    name="optimize_hyperparameters",
    description="Optimize hyperparameters",
    expected_output="Hyperparameter settings",
    agent=hyperparameter_optimizer,
    context=[architecture_task],
    next_tasks=["estimate_performance"]
)

performance_task = Task(
    name="estimate_performance",
    description="Estimate performance",
    expected_output="Performance estimates",
    agent=performance_estimator,
    context=[architecture_task, hyperparameter_task],
    next_tasks=["optimize_deployment"]
)

deployment_task = Task(
    name="optimize_deployment",
    description="Optimize deployment",
    expected_output="Deployment configuration",
    agent=deployment_optimizer,
    context=[architecture_task, performance_task],
    task_type="decision",
    condition={
        "success": ["generate_architecture"],  # Try new architecture
        "failure": ["optimize_hyperparameters"]  # Reoptimize hyperparameters
    }
)

# Create workflow
workflow = PraisonAIAgents(
    agents=[hardware_analyzer, architecture_generator, hyperparameter_optimizer,
            performance_estimator, deployment_optimizer],
    tasks=[hardware_task, architecture_task, hyperparameter_task,
           performance_task, deployment_task],
    process="workflow",
    verbose=True
)

async def main():
    print("\nStarting Neural Architecture Search Workflow...")
    print("=" * 50)
    
    # Run workflow
    results = await workflow.astart()
    
    # Print results
    print("\nArchitecture Search Results:")
    print("=" * 50)
    for task_id, result in results["task_results"].items():
        if result:
            print(f"\nTask: {task_id}")
            print(f"Result: {result.raw}")
            print("-" * 50)

if __name__ == "__main__":
    asyncio.run(main())

Next Steps

Was this page helpful?