from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio
def analyze_hardware_constraints():
"""Simulates hardware analysis"""
constraints = {
"gpu_memory": 16 * 1024,
"compute_capability": "7.5",
"memory_bandwidth": 900,
"tensor_cores": True,
"max_power_consumption": 300,
"thermal_limits": 85
}
return constraints
def generate_architecture_candidates():
"""Generates candidate architectures"""
candidates = [
{
"type": "transformer",
"layers": 12 + (int(time.time()) % 6),
"attention_heads": 8,
"embedding_dim": 512,
"estimated_params": 125_000_000
},
{
"type": "cnn",
"layers": 50 + (int(time.time()) % 50),
"filters": [64, 128, 256, 512],
"estimated_params": 25_000_000
}
]
return candidates[int(time.time()) % 2]
def optimize_hyperparameters(architecture: Dict):
"""Optimizes hyperparameters"""
optimization = {
"learning_rate": 0.001 + (time.time() % 9) / 10000,
"batch_size": 32 * (1 + int(time.time()) % 4),
"optimizer": "adam",
"weight_decay": 0.0001,
"dropout_rate": 0.1 + (time.time() % 3) / 10,
"activation": "gelu" if architecture["type"] == "transformer" else "relu"
}
return optimization
def estimate_performance(architecture: Dict, hyperparams: Dict):
"""Estimates model performance"""
performance = {
"estimated_accuracy": 0.85 + (time.time() % 10) / 100,
"estimated_training_time": {
"hours": 24 + (int(time.time()) % 24),
"gpu_hours": 96
},
"memory_requirements": {
"training": architecture["estimated_params"] * 4 / (1024 * 1024),
"inference": architecture["estimated_params"] * 2 / (1024 * 1024)
},
"flops_count": architecture["estimated_params"] * 2
}
return performance
def optimize_deployment(architecture: Dict, performance: Dict):
"""Optimizes deployment configuration"""
deployment = {
"quantization": {
"method": "dynamic",
"precision": "int8",
"estimated_speedup": 2.5
},
"pruning": {
"method": "magnitude",
"target_sparsity": 0.3,
"estimated_size_reduction": 0.6
},
"batching": {
"max_batch_size": 32,
"dynamic_batching": True
}
}
return deployment
hardware_analyzer = Agent(
name="Hardware Analyzer",
role="Hardware Analysis",
goal="Analyze hardware constraints",
instructions="Evaluate available hardware resources",
tools=[analyze_hardware_constraints]
)
architecture_generator = Agent(
name="Architecture Generator",
role="Architecture Generation",
goal="Generate neural architectures",
instructions="Create candidate neural architectures",
tools=[generate_architecture_candidates]
)
hyperparameter_optimizer = Agent(
name="Hyperparameter Optimizer",
role="Hyperparameter Optimization",
goal="Optimize hyperparameters",
instructions="Find optimal hyperparameter settings",
tools=[optimize_hyperparameters]
)
performance_estimator = Agent(
name="Performance Estimator",
role="Performance Estimation",
goal="Estimate model performance",
instructions="Predict model performance metrics",
tools=[estimate_performance]
)
deployment_optimizer = Agent(
name="Deployment Optimizer",
role="Deployment Optimization",
goal="Optimize deployment settings",
instructions="Configure optimal deployment",
tools=[optimize_deployment]
)
hardware_task = Task(
name="analyze_hardware",
description="Analyze hardware constraints",
expected_output="Hardware analysis",
agent=hardware_analyzer,
is_start=True,
next_tasks=["generate_architecture"]
)
architecture_task = Task(
name="generate_architecture",
description="Generate architecture candidates",
expected_output="Architecture candidates",
agent=architecture_generator,
next_tasks=["optimize_hyperparameters"]
)
hyperparameter_task = Task(
name="optimize_hyperparameters",
description="Optimize hyperparameters",
expected_output="Hyperparameter settings",
agent=hyperparameter_optimizer,
context=[architecture_task],
next_tasks=["estimate_performance"]
)
performance_task = Task(
name="estimate_performance",
description="Estimate performance",
expected_output="Performance estimates",
agent=performance_estimator,
context=[architecture_task, hyperparameter_task],
next_tasks=["optimize_deployment"]
)
deployment_task = Task(
name="optimize_deployment",
description="Optimize deployment",
expected_output="Deployment configuration",
agent=deployment_optimizer,
context=[architecture_task, performance_task],
task_type="decision",
condition={
"success": ["generate_architecture"],
"failure": ["optimize_hyperparameters"]
}
)
workflow = PraisonAIAgents(
agents=[hardware_analyzer, architecture_generator, hyperparameter_optimizer,
performance_estimator, deployment_optimizer],
tasks=[hardware_task, architecture_task, hyperparameter_task,
performance_task, deployment_task],
process="workflow",
verbose=True
)
async def main():
print("\nStarting Neural Architecture Search Workflow...")
print("=" * 50)
results = await workflow.astart()
print("\nArchitecture Search Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
print(f"\nTask: {task_id}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
asyncio.run(main())