from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio
def analyze_mission_parameters():
"""Simulates mission parameter analysis"""
parameters = {
"duration": 180,
"crew_size": 4,
"orbital_parameters": {
"altitude": 400,
"inclination": 51.6,
"period": 92.68
},
"mission_objectives": [
"scientific_research",
"satellite_deployment",
"space_station_maintenance"
]
}
return parameters
def calculate_resource_requirements(params: Dict):
"""Calculates required resources"""
requirements = {
"life_support": {
"oxygen": params["duration"] * params["crew_size"] * 0.84,
"water": params["duration"] * params["crew_size"] * 2.5,
"food": params["duration"] * params["crew_size"] * 1.8
},
"power": {
"daily_consumption": 30 + (params["crew_size"] * 5),
"peak_demand": 45 + (params["crew_size"] * 8),
"backup_capacity": 72
},
"propellant": {
"main_engine": 2000,
"attitude_control": 500,
"reserve": 300
}
}
return requirements
def plan_contingencies(requirements: Dict):
"""Plans contingency scenarios"""
contingencies = [
{
"scenario": "power_failure",
"probability": 0.05,
"impact": "critical",
"resources_needed": {
"backup_power": requirements["power"]["daily_consumption"] * 3,
"repair_equipment": ["solar_panel_kit", "power_distribution_unit"]
}
},
{
"scenario": "life_support_malfunction",
"probability": 0.03,
"impact": "severe",
"resources_needed": {
"oxygen_reserve": requirements["life_support"]["oxygen"] * 0.2,
"repair_parts": ["filter_system", "pressure_regulators"]
}
}
]
return contingencies[int(time.time()) % 2]
def optimize_allocation(requirements: Dict, contingencies: Dict):
"""Optimizes resource allocation"""
allocation = {
"primary_resources": {
"life_support": {
"nominal": requirements["life_support"],
"buffer": 0.15
},
"power": {
"nominal": requirements["power"],
"buffer": 0.2
}
},
"contingency_resources": {
"type": contingencies["scenario"],
"allocation": contingencies["resources_needed"],
"priority": "high" if contingencies["impact"] == "critical" else "medium"
}
}
return allocation
def simulate_mission_scenarios(allocation: Dict):
"""Simulates various mission scenarios"""
scenarios = {
"nominal_operations": {
"success_rate": 0.95,
"resource_utilization": 0.85,
"efficiency_rating": 0.9
},
"emergency_scenarios": [
{
"type": "power_reduction",
"duration": 48,
"impact": "moderate",
"resolution_success": 0.88
},
{
"type": "life_support_adjustment",
"duration": 24,
"impact": "minor",
"resolution_success": 0.92
}
]
}
return scenarios
mission_analyzer = Agent(
name="Mission Analyzer",
role="Mission Analysis",
goal="Analyze mission parameters",
instructions="Evaluate mission requirements and constraints",
tools=[analyze_mission_parameters]
)
resource_calculator = Agent(
name="Resource Calculator",
role="Resource Calculation",
goal="Calculate resource requirements",
instructions="Determine required resources for mission",
tools=[calculate_resource_requirements]
)
contingency_planner = Agent(
name="Contingency Planner",
role="Contingency Planning",
goal="Plan for contingencies",
instructions="Develop contingency scenarios and plans",
tools=[plan_contingencies]
)
resource_optimizer = Agent(
name="Resource Optimizer",
role="Resource Optimization",
goal="Optimize resource allocation",
instructions="Optimize resource distribution",
tools=[optimize_allocation]
)
scenario_simulator = Agent(
name="Scenario Simulator",
role="Scenario Simulation",
goal="Simulate mission scenarios",
instructions="Simulate various mission scenarios",
tools=[simulate_mission_scenarios]
)
mission_task = Task(
name="analyze_mission",
description="Analyze mission parameters",
expected_output="Mission parameters",
agent=mission_analyzer,
is_start=True,
next_tasks=["calculate_resources"]
)
resource_task = Task(
name="calculate_resources",
description="Calculate resource requirements",
expected_output="Resource requirements",
agent=resource_calculator,
next_tasks=["plan_contingencies"]
)
contingency_task = Task(
name="plan_contingencies",
description="Plan contingencies",
expected_output="Contingency plans",
agent=contingency_planner,
context=[resource_task],
next_tasks=["optimize_resources"]
)
optimization_task = Task(
name="optimize_resources",
description="Optimize resource allocation",
expected_output="Resource allocation",
agent=resource_optimizer,
context=[resource_task, contingency_task],
next_tasks=["simulate_scenarios"]
)
simulation_task = Task(
name="simulate_scenarios",
description="Simulate scenarios",
expected_output="Simulation results",
agent=scenario_simulator,
task_type="decision",
condition={
"nominal_operations": "",
"emergency_scenarios": ["optimize_resources"]
}
)
workflow = PraisonAIAgents(
agents=[mission_analyzer, resource_calculator, contingency_planner,
resource_optimizer, scenario_simulator],
tasks=[mission_task, resource_task, contingency_task,
optimization_task, simulation_task],
process="workflow",
verbose=True
)
async def main():
print("\nStarting Space Mission Resource Optimization Workflow...")
print("=" * 50)
results = await workflow.astart()
print("\nResource Optimization Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
print(f"\nTask: {task_id}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
asyncio.run(main())