Vector Store Module
The Vector Store module provides concrete implementations of vector storage backends for semantic search and document retrieval.Import
Quick Example
Features
- Multiple backend support (ChromaDB, Pinecone)
- Namespace-based document organization
- Persistent local storage with ChromaDB
- Cloud vector database integration with Pinecone
- Lazy loading of optional dependencies
- Automatic telemetry disabling
Classes
ChromaVectorStore
ChromaDB vector store adapter with local persistence.
| Parameter | Type | Default | Description |
|---|---|---|---|
config | dict | None | Configuration options |
namespace | str | "default" | Collection namespace |
persist_directory | str | ".praison/chroma" | Storage directory |
Requires
chromadb package: pip install chromadbPineconeVectorStore
Pinecone cloud vector store adapter.
| Parameter | Type | Default | Description |
|---|---|---|---|
api_key | str | PINECONE_API_KEY env | Pinecone API key |
index_name | str | "praisonai" | Pinecone index name |
namespace | str | "default" | Vector namespace |
Requires
pinecone package: pip install pineconeMethods
add(texts, embeddings, metadatas=None, ids=None, namespace=None)
Add vectors to the store.
Parameters:
texts(List[str]): Document textsembeddings(List[List[float]]): Vector embeddingsmetadatas(List[dict], optional): Metadata for each documentids(List[str], optional): Custom IDs (auto-generated if not provided)namespace(str, optional): Override default namespace
List[str] - IDs of added documents
query(embedding, top_k=10, namespace=None, filter=None)
Query vectors by similarity.
Parameters:
embedding(List[float]): Query vectortop_k(int): Number of results to returnnamespace(str, optional): Override default namespacefilter(dict, optional): Metadata filter
List[VectorRecord] - Matching records with scores
delete(ids=None, namespace=None, filter=None, delete_all=False)
Delete vectors from the store.
Parameters:
ids(List[str], optional): Specific IDs to deletenamespace(str, optional): Override default namespacefilter(dict, optional): Delete by metadata filterdelete_all(bool): Delete all vectors in namespace
int - Number of deleted vectors
count(namespace=None)
Get count of vectors in the store.
Returns: int - Vector count
get(ids, namespace=None)
Get vectors by ID.
Parameters:
ids(List[str]): IDs to retrieve
List[VectorRecord] - Retrieved records
Example: Full Workflow
Environment Variables
CLI Usage
Related
- Readers Module - Load documents
- Retrieval Module - Retrieve documents
- Reranker Module - Rerank results

