from praisonaiagents.knowledge.vector_store import (
VectorRecord,
VectorStoreProtocol,
VectorStoreRegistry,
get_vector_store_registry,
InMemoryVectorStore
)
# Use built-in in-memory store (no external deps)
store = InMemoryVectorStore()
# Add documents with embeddings
ids = store.add(
texts=["Python is great", "Java is different"],
embeddings=[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]],
metadatas=[{"lang": "python"}, {"lang": "java"}]
)
# Query by embedding
results = store.query(
embedding=[0.1, 0.2, 0.3],
top_k=5
)
for record in results:
print(f"{record.text} (score: {record.score})")