The --handoff flag enables agent-to-agent task delegation, allowing multiple specialized agents to collaborate on complex tasks.
Quick Start
praisonai "Research and write article" --handoff "researcher,writer,editor"
Usage
Basic Handoff
praisonai "Research AI trends and write a blog post" --handoff "researcher,writer"
Expected Output:
🤝 Handoff enabled: researcher → writer
╭─ Agent Chain ────────────────────────────────────────────────────────────────╮
│ 1. 🔍 researcher - Research AI trends │
│ 2. ✍️ writer - Write blog post based on research │
╰──────────────────────────────────────────────────────────────────────────────╯
━━━ Agent 1: researcher ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Researching AI trends...
Key findings:
• Generative AI adoption increased 300% in 2024
• Multi-agent systems gaining popularity
• Edge AI deployment growing rapidly
→ Handing off to: writer
━━━ Agent 2: writer ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Writing blog post based on research...
╭────────────────────────────────── Response ──────────────────────────────────╮
│ # AI Trends Shaping 2024 │
│ │
│ The artificial intelligence landscape has undergone remarkable │
│ transformation this year. Here are the key trends... │
│ │
│ ## 1. Generative AI Goes Mainstream │
│ With a 300% increase in adoption, generative AI has moved from... │
╰──────────────────────────────────────────────────────────────────────────────╯
✅ Handoff chain completed successfully
Multi-Agent Chain
praisonai "Analyze data and create report" --handoff "analyst,visualizer,writer,reviewer"
Expected Output:
🤝 Handoff enabled: analyst → visualizer → writer → reviewer
╭─ Agent Chain ────────────────────────────────────────────────────────────────╮
│ 1. 📊 analyst - Analyze the data │
│ 2. 📈 visualizer - Create visualizations │
│ 3. ✍️ writer - Write the report │
│ 4. 🔍 reviewer - Review and finalize │
╰──────────────────────────────────────────────────────────────────────────────╯
━━━ Agent 1: analyst ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Analysis output...]
→ Handing off to: visualizer
━━━ Agent 2: visualizer ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Visualization output...]
→ Handing off to: writer
━━━ Agent 3: writer ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Report draft...]
→ Handing off to: reviewer
━━━ Agent 4: reviewer ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Final review and output...]
✅ Handoff chain completed successfully
Combine with Other Features
# Handoff with metrics
praisonai "Complex task" --handoff "agent1,agent2" --metrics
# Handoff with guardrail
praisonai "Write code" --handoff "coder,reviewer" --guardrail "Follow best practices"
# Handoff with memory
praisonai "Research project" --handoff "researcher,writer" --auto-memory
How It Works
- Parse Agents: The handoff string is parsed into agent names
- Create Chain: Agents are created with handoff capabilities
- Sequential Execution: Each agent processes and hands off to the next
- Context Passing: Previous agent’s output becomes next agent’s input
- Final Output: Last agent’s response is returned
Agent Naming
Agents are automatically configured based on their names:
| Name | Role | Goal |
|---|
researcher | Research Specialist | Find and analyze information |
writer | Content Writer | Create written content |
editor | Editor | Review and improve content |
analyst | Data Analyst | Analyze data and patterns |
coder | Developer | Write and review code |
reviewer | Reviewer | Review and validate work |
planner | Planner | Create plans and strategies |
Custom Agent Names
You can use any name - agents will be configured with generic roles:
praisonai "Task" --handoff "custom_agent1,custom_agent2"
Use Cases
Content Creation Pipeline
praisonai "Write a technical blog about Kubernetes" \
--handoff "researcher,writer,editor"
Code Review Workflow
praisonai "Review and improve this code" \
--handoff "analyzer,refactorer,reviewer" \
--fast-context ./src
Data Analysis Pipeline
praisonai "Analyze sales data and create executive summary" \
--handoff "analyst,visualizer,writer"
Research to Report
praisonai "Research quantum computing advances and write a report" \
--handoff "researcher,fact_checker,writer,editor"
Handoff Patterns
Research → Write
--handoff "researcher,writer"
Research a topic, then write about itCode → Review
--handoff "coder,reviewer"
Write code, then review itAnalyze → Report
--handoff "analyst,writer"
Analyze data, then create reportPlan → Execute → Review
--handoff "planner,executor,reviewer"
Full workflow with planning
Best Practices
Order agents logically - each agent should build on the previous agent’s work.
Long handoff chains increase latency and token usage. Keep chains focused and efficient.
Logical Order
Arrange agents in a logical workflow sequence
Specialized Agents
Use descriptive names that indicate specialization
Chain Length
Keep chains to 2-4 agents for efficiency
Clear Tasks
Ensure each agent has a clear, distinct role
Monitoring Handoffs
Use --metrics to see token usage across all agents:
praisonai "Task" --handoff "a1,a2,a3" --metrics
Expected Output:
📊 Handoff Metrics:
┌─────────────────────┬──────────────┐
│ Agent │ Tokens │
├─────────────────────┼──────────────┤
│ a1 (researcher) │ 523 │
│ a2 (writer) │ 1,247 │
│ a3 (editor) │ 456 │
├─────────────────────┼──────────────┤
│ Total │ 2,226 │
│ Estimated Cost │ $0.0134 │
└─────────────────────┴──────────────┘