The --planning flag enables planning mode where the agent creates a multi-step plan before execution.
Quick Start
praisonai "write poem" --planning
Usage
Basic Planning
praisonai "Research AI trends and write a summary" --planning
Expected Output:
📋 Planning Mode Enabled
╭─ Plan ───────────────────────────────────────────────────────────────────────╮
│ 1. Research current AI trends from multiple sources │
│ 2. Identify key themes and patterns │
│ 3. Organize findings into categories │
│ 4. Write executive summary │
│ 5. Add conclusions and recommendations │
╰──────────────────────────────────────────────────────────────────────────────╯
Approve plan? [Y/n]: y
╭─ Step 1/5 ───────────────────────────────────────────────────────────────────╮
│ 🔍 Researching current AI trends... │
╰──────────────────────────────────────────────────────────────────────────────╯
# Planning with tools for research
praisonai "Analyze market trends" --planning --planning-tools tools.py
With Reasoning
# Planning with chain-of-thought reasoning
praisonai "Complex analysis task" --planning --planning-reasoning
Auto-Approve Plans
# Auto-approve plans without confirmation
praisonai "Task" --planning --auto-approve-plan
Combine Options
# Full featured planning
praisonai "Research and write report" --planning --planning-tools tools.py --planning-reasoning
# Planning with metrics
praisonai "Complex task" --planning --metrics
How It Works
- Plan Creation: Agent analyzes the task and creates a multi-step plan
- User Approval: Plan is shown for approval (unless
--auto-approve-plan)
- Step Execution: Each step is executed sequentially
- Context Passing: Results from each step inform the next
- Final Result: Combined output from all steps
Planning Options
| Flag | Description |
|---|
--planning | Enable planning mode |
--planning-tools | Tools file for planning research |
--planning-reasoning | Enable chain-of-thought reasoning |
--auto-approve-plan | Skip plan approval prompt |
Examples
Research Task
praisonai "Research the impact of AI on healthcare and write a comprehensive report" \
--planning --planning-reasoning
Code Project
praisonai "Create a REST API with authentication" \
--planning --planning-tools tools.py
Analysis Task
praisonai "Analyze competitor products and create comparison matrix" \
--planning --auto-approve-plan
Programmatic Usage
from praisonaiagents import Agent
def search_web(query: str) -> str:
return f"Search results for: {query}"
agent = Agent(
name="AI Assistant",
instructions="Research and write about topics",
planning=True, # Enable planning mode
planning_tools=[search_web], # Tools for planning research
planning_reasoning=True # Chain-of-thought reasoning
)
result = agent.start("Research AI trends in 2025 and write a summary")
What happens:
- 📋 Agent creates a multi-step plan
- 🚀 Executes each step sequentially
- 📊 Shows progress with context passing
- ✅ Returns final result
Best Practices
Use planning mode for complex, multi-step tasks that benefit from structured execution.
Planning mode adds overhead for simple tasks. Use it for complex tasks with multiple steps.
| Use Planning For | Don’t Use For |
|---|
| Multi-step research | Simple questions |
| Complex analysis | Quick lookups |
| Project creation | Single-step tasks |
| Report writing | Conversational queries |