Quick Start
Install Package
First, install the required packages: pip install praisonaiagents e2b_code_interpreter
Set API Key
Set your OpenAI API key and E2B API key as an environment variable in your terminal: export OPENAI_API_KEY = your_api_key_here
export E2B_API_KEY = your_e2b_api_key_here
Create a file
Create a new file app.py
with the basic setup: from praisonaiagents import Agent, Task, PraisonAIAgents
from e2b_code_interpreter import Sandbox
def code_interpreter ( code : str ):
print ( f " \n { '=' * 50 } \n > Running following AI-generated code: \n { code } \n { '=' * 50 } " )
exec_result = Sandbox().run_code(code)
if exec_result.error:
print ( "[Code Interpreter error]" , exec_result.error)
return { "error" : str (exec_result.error)}
else :
results = []
for result in exec_result.results:
if hasattr (result, '__iter__' ):
results.extend( list (result))
else :
results.append( str (result))
logs = { "stdout" : list (exec_result.logs.stdout), "stderr" : list (exec_result.logs.stderr)}
return json.dumps({ "results" : results, "logs" : logs})
# Create code agent
code_agent = Agent(
role = "Code Developer" ,
goal = "Write and execute Python code" ,
backstory = "Expert Python developer with strong coding skills" ,
tools = [code_interpreter],
verbose = True
)
# Create a task
task = Task(
description = "Write and execute a Python script to analyze data" ,
expected_output = "Working Python script with execution results" ,
agent = code_agent
)
# Create and start the agents
agents = PraisonAIAgents(
agents = [code_agent],
tasks = [task],
process = "sequential" ,
verbose = 2
)
# Start execution
agents.start()
Start Agents
Type this in your terminal to run your agents:
Requirements
Python 3.10 or higher
OpenAI API key. Generate OpenAI API key here . Use Other models using this guide .
e2b_code_interpreter package installed
Understanding Code Agents
What are Code Agents? Code agents are specialized AI agents that can:
Write Python code based on requirements
Execute code safely in a sandboxed environment
Handle code execution results and errors
Work together in a pipeline (writer → executor)
Features
Code Writer Writes Python code based on requirements.
Safe Execution Executes code in a sandboxed environment.
Error Handling Manages code execution errors and debugging.
Results Processing Processes and formats execution results.
Multi-Agent Code Development
Install Package
First, install the required packages: pip install praisonaiagents e2b_code_interpreter
Set API Key
Set your OpenAI API key as an environment variable in your terminal: export OPENAI_API_KEY = your_api_key_here
Create a file
Create a new file app.py
with the basic setup: from praisonaiagents import Agent, Task, PraisonAIAgents
from e2b_code_interpreter import Sandbox
def code_interpreter ( code : str ):
print ( f " \n { '=' * 50 } \n > Running following AI-generated code: \n { code } \n { '=' * 50 } " )
exec_result = Sandbox().run_code(code)
if exec_result.error:
print ( "[Code Interpreter error]" , exec_result.error)
return { "error" : str (exec_result.error)}
else :
results = []
for result in exec_result.results:
if hasattr (result, '__iter__' ):
results.extend( list (result))
else :
results.append( str (result))
logs = { "stdout" : list (exec_result.logs.stdout), "stderr" : list (exec_result.logs.stderr)}
return json.dumps({ "results" : results, "logs" : logs})
# Create first agent for writing code
code_writer = Agent(
role = "Code Writer" ,
goal = "Write efficient Python code" ,
backstory = "Expert Python developer specializing in code writing" ,
verbose = True
)
# Create second agent for code execution
code_executor = Agent(
role = "Code Executor" ,
goal = "Execute and validate Python code" ,
backstory = "Expert in code execution and testing" ,
tools = [code_interpreter],
verbose = True
)
# Create first task
writing_task = Task(
description = "Write a Python script for data analysis" ,
expected_output = "Complete Python script" ,
agent = code_writer
)
# Create second task
execution_task = Task(
description = "Execute and validate the Python script" ,
expected_output = "Execution results and validation" ,
agent = code_executor
)
# Create and start the agents
agents = PraisonAIAgents(
agents = [code_writer, code_executor],
tasks = [writing_task, execution_task],
process = "sequential"
)
# Start execution
agents.start()
Start Agents
Type this in your terminal to run your agents:
Configuration Options
# Create an agent with advanced code execution configuration
agent = Agent(
role = "Code Developer" ,
goal = "Write and execute Python code" ,
backstory = "Expert in Python development" ,
tools = [code_interpreter],
verbose = True , # Enable detailed logging
llm = "gpt-4o" # Language model to use
)
Troubleshooting
Code Errors If code execution fails:
Check syntax errors
Verify package imports
Enable verbose mode for debugging
Sandbox Issues If sandbox execution fails:
Check environment setup
Verify permissions
Review resource limits
Next Steps
For optimal results, ensure code is properly formatted and tested in the sandbox environment before production use.