PraisonAI Train¶
pip install "praisonai[train]"
To upload to Huggingface¶
export HF_TOKEN=xxxxxxxxxxxxxx
To upload to ollama.com (Linux)¶
sudo cat /usr/share/ollama/.ollama/id_ed25519.pub
Save the output from above to ollama.com --> Ollama keys
RUN PraisonAI Train¶
praisonai train \
--model unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit \
--dataset yahma/alpaca-cleaned \
--hf mervinpraison/llama3.1-instruct \
--ollama mervinpraison/llama3.1-instruct
Note: PraisonAI Train currently tested on Linux with 1 GPU. With pytorch-cuda=12.1
Config.yaml example¶
ollama_save: "true"
huggingface_save: "true"
train: "true"
model_name: "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
hf_model_name: "mervinpraison/llama-3.1-instruct"
ollama_model: "mervinpraison/llama3.1-instruct"
model_parameters: "8b"
dataset:
- name: "yahma/alpaca-cleaned"
split_type: "train"
processing_func: "format_prompts"
rename:
input: "input"
output: "output"
instruction: "instruction"
filter_data: false
filter_column_value: "id"
filter_value: "alpaca"
num_samples: 20000
dataset_text_field: "text"
dataset_num_proc: 2
packing: false
max_seq_length: 2048
load_in_4bit: true
lora_r: 16
lora_target_modules:
- "q_proj"
- "k_proj"
- "v_proj"
- "o_proj"
- "gate_proj"
- "up_proj"
- "down_proj"
lora_alpha: 16
lora_dropout: 0
lora_bias: "none"
use_gradient_checkpointing: "unsloth"
random_state: 3407
use_rslora: false
loftq_config: null
per_device_train_batch_size: 2
gradient_accumulation_steps: 2
warmup_steps: 5
num_train_epochs: 1
max_steps: 10
learning_rate: 2.0e-4
logging_steps: 1
optim: "adamw_8bit"
weight_decay: 0.01
lr_scheduler_type: "linear"
seed: 3407
output_dir: "outputs"
quantization_method:
- "q4_k_m"
praisonai train