API Reference
AutoAgents Module
Documentation for the praisonaiagents.agents.autoagents module
Module praisonaiagents.agents.autoagents
The AutoAgents module provides automatic creation and management of AI agents and tasks based on high-level instructions.
Classes
AutoAgents
The main class for automatically creating and managing AI agents and tasks.
Parameters
instructions: str
- High-level task description for the agentstools: Optional[List[Any]] = None
- List of tools available to the agentsverbose: bool = False
- Enable detailed loggingprocess: str = "sequential"
- Process type (sequential or hierarchical)manager_llm: Optional[str] = None
- Language model for manager agentmax_retries: int = 5
- Maximum retry attemptscompletion_checker: Optional[Any] = None
- Custom completion checkerallow_code_execution: bool = False
- Allow code executionmemory: bool = True
- Enable agent memorymarkdown: bool = True
- Enable markdown formattingself_reflect: bool = False
- Enable agent self-reflectionmax_reflect: int = 3
- Maximum reflection iterationsmin_reflect: int = 1
- Minimum reflection iterationsllm: Optional[str] = None
- Language model for agentsfunction_calling_llm: Optional[str] = None
- Language model for tool callingrespect_context_window: bool = True
- Respect model context windowcode_execution_mode: str = "safe"
- Code execution mode (safe/unsafe)embedder_config: Optional[Dict[str, Any]] = None
- Embedder configurationknowledge_sources: Optional[List[Any]] = None
- Knowledge sourcesuse_system_prompt: bool = True
- Use system promptscache: bool = True
- Enable cachingallow_delegation: bool = False
- Allow task delegationstep_callback: Optional[Any] = None
- Callback for each stepsystem_template: Optional[str] = None
- Custom system templateprompt_template: Optional[str] = None
- Custom prompt templateresponse_template: Optional[str] = None
- Custom response templatemax_rpm: Optional[int] = None
- Maximum requests per minutemax_execution_time: Optional[int] = None
- Maximum execution timemax_iter: int = 20
- Maximum iterationsreflect_llm: Optional[str] = None
- Language model for reflectionmax_agents: int = 3
- Maximum number of agents to create
Methods
start()
Start the agents synchronously.
astart()
Start the agents asynchronously.
Internal Methods
_generate_config()
Generate the configuration for agents and tasks.
_create_agents_and_tasks()
Create agents and tasks from configuration.
_assign_tools_to_agent()
Assign appropriate tools to an agent.
Pydantic Models
TaskConfig
Configuration for a task.
Attributes
name: str
- Task namedescription: str
- Task descriptionexpected_output: str
- Expected output descriptiontools: List[str]
- Required tools for the task
AgentConfig
Configuration for an agent.
Attributes
name: str
- Agent namerole: str
- Agent rolegoal: str
- Agent goalbackstory: str
- Agent backstorytools: List[str]
- Required toolstasks: List[TaskConfig]
- Tasks assigned to the agent
AutoAgentsConfig
Overall configuration for AutoAgents.
Attributes
main_instruction: str
- Main instruction for the agentsprocess_type: str
- Process type (sequential/hierarchical)agents: List[AgentConfig]
- List of agent configurations
Example Usage
Basic Usage
Async Usage
Advanced Configuration
For optimal results, provide clear instructions and appropriate tools for your use case.
Was this page helpful?