Skip to main content

Cost Tracking

PraisonAI CLI provides comprehensive cost tracking to help you monitor token usage and expenses across your AI coding sessions. Know exactly what you’re spending in real-time.

Overview

The cost tracking system monitors:
  • Token usage - Input, output, and cached tokens
  • Cost calculation - Real-time cost based on model pricing
  • Session statistics - Aggregated stats across requests
  • Model breakdown - Usage per model

Quick Start

# View costs during interactive session
>>> /cost

# Or use the Python API
from praisonai.cli.features import CostTrackerHandler

tracker = CostTrackerHandler()
tracker.initialize()
tracker.track_request("gpt-4o", input_tokens=1000, output_tokens=500)
print(f"Total cost: ${tracker.get_cost():.4f}")

Supported Models

Cost tracking supports 18+ models with accurate pricing:

OpenAI Models

ModelInput (per 1M)Output (per 1M)
gpt-4o$2.50$10.00
gpt-4o-mini$0.15$0.60
gpt-4-turbo$10.00$30.00
o1$15.00$60.00
o1-mini$3.00$12.00
o3-mini$1.10$4.40

Anthropic Models

ModelInput (per 1M)Output (per 1M)
claude-3-5-sonnet$3.00$15.00
claude-3-opus$15.00$75.00
claude-3-haiku$0.25$1.25

Google Models

ModelInput (per 1M)Output (per 1M)
gemini-2.0-flash$0.10$0.40
gemini-1.5-pro$1.25$5.00
gemini-1.5-flash$0.075$0.30

Python API

Basic Tracking

from praisonai.cli.features import CostTrackerHandler

# Initialize tracker
handler = CostTrackerHandler()
tracker = handler.initialize(session_id="my-session")

# Track a request
stats = handler.track_request(
    model="gpt-4o",
    input_tokens=1000,
    output_tokens=500,
    cached_tokens=200,
    duration_ms=1500.0
)

# Get totals
print(f"Total tokens: {handler.get_tokens()}")
print(f"Total cost: ${handler.get_cost():.4f}")

Session Statistics

# Get detailed summary
summary = handler.get_summary()

print(f"Session ID: {summary['session_id']}")
print(f"Total requests: {summary['total_requests']}")
print(f"Input tokens: {summary['total_input_tokens']}")
print(f"Output tokens: {summary['total_output_tokens']}")
print(f"Cached tokens: {summary['total_cached_tokens']}")
print(f"Total cost: ${summary['total_cost']:.4f}")
print(f"Avg cost/request: ${summary['avg_cost_per_request']:.4f}")

Tracking from LLM Responses

from praisonai.cli.features.cost_tracker import CostTracker

tracker = CostTracker()

# Track from OpenAI-style response
response = openai_client.chat.completions.create(...)
tracker.track_from_response("gpt-4o", response)

# Track from dict response
response_dict = {
    "usage": {
        "prompt_tokens": 500,
        "completion_tokens": 200
    }
}
tracker.track_from_response("gpt-4o", response_dict)

Export Session Data

import json

# Export to JSON
json_str = tracker.export_json()
data = json.loads(json_str)

# Structure:
# {
#   "session": {
#     "session_id": "abc123",
#     "start_time": "2024-01-01T12:00:00",
#     "total_requests": 10,
#     "total_cost": 0.0425,
#     ...
#   },
#   "requests": [
#     {"model": "gpt-4o", "input_tokens": 1000, ...},
#     ...
#   ]
# }

# Save to file
with open("session_costs.json", "w") as f:
    f.write(json_str)

CLI Integration

Interactive Mode

praisonai --interactive

>>> Help me refactor this code
[AI responds...]

>>> /cost
╭─────────────────────────────────────╮
           Session Stats
├─────────────────────────────────────┤
 Session: abc12345
 Duration: 125.3s
 Requests: 3

 Tokens:
   Input:  2,500
   Output: 800
   Total:  3,300
   Cached: 500

 Cost: $0.0125
 Avg per request: $0.0042

 Models used:
   gpt-4o: 2 requests
   gpt-4o-mini: 1 request
╰─────────────────────────────────────╯

Token Breakdown

>>> /tokens
╭─────────────────────────────────────╮
          Token Breakdown
├─────────────────────────────────────┤
 Input tokens:  2,500 (75.8%)        │
 Output tokens: 800 (24.2%)          │
 Cached tokens: 500 (saved)          │

 Context window: 128,000
 Used: 2.6%
╰─────────────────────────────────────╯

Cost Calculation

How Costs Are Calculated

from praisonai.cli.features.cost_tracker import ModelPricing

# Get pricing for a model
pricing = ModelPricing(
    model_name="gpt-4o",
    input_price_per_1m=2.50,
    output_price_per_1m=10.00
)

# Calculate cost
input_tokens = 1000
output_tokens = 500

cost = pricing.calculate_cost(input_tokens, output_tokens)
# (1000 / 1,000,000 * 2.50) + (500 / 1,000,000 * 10.00)
# = 0.0025 + 0.005
# = $0.0075

Custom Pricing

Add pricing for custom or new models:
from praisonai.cli.features.cost_tracker import ModelPricing, DEFAULT_PRICING

# Add custom model pricing
DEFAULT_PRICING["my-custom-model"] = ModelPricing(
    model_name="my-custom-model",
    input_price_per_1m=1.00,
    output_price_per_1m=2.00,
    context_window=32000
)

# Now tracking will use this pricing
tracker.track_request("my-custom-model", 1000, 500)

Real-Time Monitoring

Display During Operations

from praisonai.cli.features.cost_tracker import CostTracker

tracker = CostTracker()

# After each request, show running total
def on_request_complete(model, input_tokens, output_tokens):
    stats = tracker.track_request(model, input_tokens, output_tokens)
    print(f"Request cost: ${stats.cost:.4f}")
    print(f"Session total: ${tracker.get_total_cost():.4f}")

Budget Alerts

BUDGET_LIMIT = 1.00  # $1.00

def check_budget():
    current_cost = tracker.get_total_cost()
    if current_cost > BUDGET_LIMIT:
        print(f"⚠️ Budget exceeded! Current: ${current_cost:.2f}")
        return False
    elif current_cost > BUDGET_LIMIT * 0.8:
        print(f"⚠️ 80% of budget used: ${current_cost:.2f}")
    return True

Session Management

Multiple Sessions

# Create separate trackers for different tasks
refactor_tracker = CostTracker(session_id="refactor-task")
test_tracker = CostTracker(session_id="test-generation")

# Track separately
refactor_tracker.track_request("gpt-4o", 2000, 1000)
test_tracker.track_request("gpt-4o-mini", 500, 200)

# Compare costs
print(f"Refactoring: ${refactor_tracker.get_total_cost():.4f}")
print(f"Testing: ${test_tracker.get_total_cost():.4f}")

End Session

# End session and get final stats
final_stats = tracker.end_session()

print(f"Session ended at: {final_stats.end_time}")
print(f"Total duration: {final_stats.duration_seconds:.1f}s")
print(f"Final cost: ${final_stats.total_cost:.4f}")

Best Practices

Cost Optimization

  1. Use appropriate models - gpt-4o-mini for simple tasks
  2. Monitor token usage - Check /tokens regularly
  3. Enable caching - Reduces input token costs
  4. Batch operations - Fewer requests = lower overhead

Tracking Tips

  1. Name sessions - Use descriptive session IDs
  2. Export regularly - Save session data for analysis
  3. Set budgets - Implement budget alerts
  4. Review by model - Identify expensive operations

Environment Variables

# Set default budget limit
export PRAISONAI_BUDGET_LIMIT=10.00

# Enable cost display after each request
export PRAISONAI_SHOW_COSTS=true

# Custom pricing file
export PRAISONAI_PRICING_FILE=/path/to/pricing.json