The Model Capabilities system provides comprehensive feature detection and comparison across different LLMs, enabling intelligent model selection based on specific task requirements.

Quick Start

1

Install Package

Install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Keys

Configure your model API keys:

export OPENAI_API_KEY=your_openai_key
export ANTHROPIC_API_KEY=your_anthropic_key
export GOOGLE_API_KEY=your_google_key
3

Create Example

Create model_capabilities.py:

from praisonaiagents.llm import ModelCapabilities
from praisonaiagents import Agent, Task, PraisonAIAgents

# Initialize model capabilities detector
capabilities = ModelCapabilities()

# Analyze available models
print("Available Models and Their Capabilities:")
print("=" * 50)

models = capabilities.list_models()
for model in models:
    caps = capabilities.get_capabilities(model)
    print(f"\n{model}:")
    print(f"  Context: {caps['max_context']} tokens")
    print(f"  Strengths: {', '.join(caps['strengths'])}")
    print(f"  Cost: ${caps['cost_per_1k_tokens']}/1k tokens")

# Compare models for specific task
task_requirements = {
    "type": "code_generation",
    "complexity": "high",
    "language": "python",
    "context_needed": 8000
}

best_model = capabilities.recommend_model(task_requirements)
print(f"\nBest model for task: {best_model}")

# Create agent with capability-aware model selection
smart_agent = Agent(
    name="Capability-Aware Agent",
    role="Adaptive AI Assistant",
    goal="Use the best model based on task requirements",
    instructions="Leverage model capabilities for optimal performance",
    model_selector=capabilities
)

# Test with different task types
coding_task = Task(
    description="Write a complex Python algorithm for graph traversal",
    expected_output="Optimized Python code with explanation",
    agent=smart_agent,
    task_type="coding"
)

analysis_task = Task(
    description="Analyze 100-page financial report",
    expected_output="Comprehensive financial analysis",
    agent=smart_agent,
    task_type="long_context_analysis"
)

creative_task = Task(
    description="Write a creative short story",
    expected_output="Engaging narrative",
    agent=smart_agent,
    task_type="creative_writing"
)

# Run workflow
workflow = PraisonAIAgents(
    agents=[smart_agent],
    tasks=[coding_task, analysis_task, creative_task],
    verbose=True
)

results = workflow.start()

# Show capability matching results
print("\nCapability Matching Results:")
for task, model in capabilities.get_task_model_mapping().items():
    print(f"{task}: {model}")
4

Run Example

Execute the capabilities demo:

python model_capabilities.py

Understanding Model Capabilities

What are Model Capabilities?

Model Capabilities system:

  • Detects and compares features across different LLMs
  • Matches task requirements with model strengths
  • Provides performance benchmarks and comparisons
  • Enables data-driven model selection
  • Tracks capability evolution over time

Core Features

Feature Detection

Automatically detect model capabilities and limitations.

Performance Metrics

Track speed, accuracy, and cost metrics for each model.

Capability Matching

Match task requirements with model strengths.

Comparison Tools

Compare models side-by-side for informed decisions.

Model Capability Profiles

GPT-4 Family

gpt4_capabilities = {
    "gpt-4": {
        "max_context": 128000,
        "strengths": ["reasoning", "coding", "analysis", "math"],
        "weaknesses": ["speed", "cost"],
        "languages": 95,
        "multimodal": False,
        "cost_per_1k_tokens": {"input": 0.03, "output": 0.06},
        "latency": "medium",
        "use_cases": ["complex reasoning", "code generation", "technical analysis"]
    },
    "gpt-4-turbo": {
        "max_context": 128000,
        "strengths": ["reasoning", "speed", "cost-efficiency"],
        "weaknesses": ["very long contexts"],
        "languages": 95,
        "multimodal": True,
        "cost_per_1k_tokens": {"input": 0.01, "output": 0.03},
        "latency": "low",
        "use_cases": ["general tasks", "multimodal analysis", "rapid responses"]
    }
}

Claude 3 Family

claude3_capabilities = {
    "claude-3-opus": {
        "max_context": 200000,
        "strengths": ["long_context", "reasoning", "writing", "safety"],
        "weaknesses": ["cost", "speed"],
        "languages": 80,
        "multimodal": True,
        "cost_per_1k_tokens": {"input": 0.015, "output": 0.075},
        "latency": "high",
        "use_cases": ["document analysis", "creative writing", "complex tasks"]
    },
    "claude-3-sonnet": {
        "max_context": 200000,
        "strengths": ["balance", "long_context", "efficiency"],
        "weaknesses": ["specialized tasks"],
        "languages": 80,
        "multimodal": True,
        "cost_per_1k_tokens": {"input": 0.003, "output": 0.015},
        "latency": "medium",
        "use_cases": ["general purpose", "document processing", "balanced tasks"]
    }
}

Capability Detection Methods

from praisonaiagents.llm import ModelCapabilities, CapabilityTest

# Initialize capability detector
detector = ModelCapabilities()

# Run comprehensive capability tests
test_suite = CapabilityTest()

# Test reasoning capabilities
reasoning_score = test_suite.test_reasoning("gpt-4")
print(f"Reasoning score: {reasoning_score}/100")

# Test context handling
context_test = test_suite.test_context_length("claude-3-sonnet", tokens=150000)
print(f"Context handling: {'Passed' if context_test else 'Failed'}")

# Test multilingual support
languages = test_suite.test_languages("gpt-4")
print(f"Supported languages: {len(languages)}")

# Test specialized capabilities
capabilities_matrix = test_suite.run_full_test_suite([
    "gpt-4",
    "claude-3-opus",
    "gemini-pro",
    "llama-3-70b"
])

# Generate capability report
detector.generate_capability_report(capabilities_matrix, "model_comparison.html")

Advanced Capability Matching

Task-Based Selection

# Define task profiles
task_profiles = {
    "code_review": {
        "required": ["code_understanding", "bug_detection", "suggestions"],
        "preferred": ["fast_response", "cost_effective"],
        "context": 10000
    },
    "research_paper": {
        "required": ["long_context", "academic_writing", "citations"],
        "preferred": ["reasoning", "fact_checking"],
        "context": 50000
    },
    "real_time_chat": {
        "required": ["low_latency", "conversational"],
        "preferred": ["cost_effective", "multilingual"],
        "context": 4000
    }
}

# Match capabilities to tasks
for task_name, requirements in task_profiles.items():
    best_model = detector.match_task_to_model(requirements)
    score = detector.calculate_match_score(best_model, requirements)
    print(f"{task_name}: {best_model} (score: {score:.2f})")

Dynamic Capability Updates

# Monitor and update capabilities based on performance
detector.enable_performance_tracking()

# After task execution
detector.update_capability_metrics(
    model="gpt-4",
    task_type="coding",
    performance_metrics={
        "accuracy": 0.95,
        "speed": 2.3,  # seconds
        "token_efficiency": 0.85
    }
)

# Get updated recommendations based on real performance
updated_recommendation = detector.recommend_with_history(
    task_requirements,
    consider_performance=True
)

Capability Comparison Tools

# Generate visual capability comparison
from praisonaiagents.llm import CapabilityVisualizer

visualizer = CapabilityVisualizer()

# Create radar chart comparing models
visualizer.create_radar_chart(
    models=["gpt-4", "claude-3-opus", "gemini-pro"],
    capabilities=["reasoning", "speed", "cost", "context", "languages"],
    output="model_comparison.png"
)

# Create capability matrix heatmap
visualizer.create_heatmap(
    models=detector.list_models(),
    capabilities=detector.list_all_capabilities(),
    output="capability_matrix.png"
)

Best Practices

Troubleshooting

Capability Mismatches

If models aren’t performing as expected:

  • Update capability profiles
  • Run fresh benchmarks
  • Check API version changes
  • Verify task requirements

Performance Issues

If capability detection is slow:

  • Use cached results
  • Run async benchmarks
  • Limit test scope
  • Use sampling strategies

Model-Specific Features

Vision Capabilities

Models with image understanding:

  • GPT-4V
  • Gemini Pro Vision
  • Claude 3 (all variants)

Code Specialists

Optimized for programming:

  • GPT-4
  • DeepSeek Coder
  • Code Llama

Long Context

Extended context windows:

  • Claude 3 (200k)
  • GPT-4 Turbo (128k)
  • Gemini 1.5 Pro (1M)

Next Steps

Model capabilities are constantly evolving. The system automatically updates capability profiles through regular testing and performance monitoring to ensure accurate recommendations.