from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio
def analyze_quantum_circuit():
"""Simulates quantum circuit analysis"""
circuit_metrics = {
"depth": 15 + (int(time.time()) % 10),
"gates": {
"single_qubit": 25 + (int(time.time()) % 15),
"two_qubit": 10 + (int(time.time()) % 8),
"measurement": 5 + (int(time.time()) % 3)
},
"qubits": 8 + (int(time.time()) % 4)
}
return circuit_metrics
def identify_optimization_opportunities(metrics: Dict):
"""Identifies potential optimization areas"""
opportunities = []
if metrics["depth"] > 20:
opportunities.append({
"type": "depth_reduction",
"potential": "high",
"technique": "parallel_gates"
})
if metrics["gates"]["two_qubit"] > 15:
opportunities.append({
"type": "gate_reduction",
"potential": "medium",
"technique": "gate_decomposition"
})
return opportunities
def simulate_optimization(opportunities: List[Dict]):
"""Simulates optimization results"""
results = []
for opt in opportunities:
improvement = {
"high": 0.3 + (time.time() % 2) / 10,
"medium": 0.2 + (time.time() % 2) / 10,
"low": 0.1 + (time.time() % 2) / 10
}
results.append({
"type": opt["type"],
"improvement": improvement[opt["potential"]],
"success_probability": 0.8 + (time.time() % 2) / 10
})
return results
def benchmark_performance(original: Dict, optimized: List[Dict]):
"""Benchmarks optimization performance"""
benchmarks = {
"execution_time": {
"original": 100 + (int(time.time()) % 50),
"optimized": 70 + (int(time.time()) % 30)
},
"fidelity": {
"original": 0.9 + (time.time() % 1) / 10,
"optimized": 0.85 + (time.time() % 1) / 10
},
"resource_usage": {
"original": original["qubits"],
"optimized": original["qubits"] - len(optimized)
}
}
return benchmarks
def validate_results(benchmarks: Dict):
"""Validates optimization results"""
validations = {
"performance_gain": (benchmarks["execution_time"]["original"] -
benchmarks["execution_time"]["optimized"]) /
benchmarks["execution_time"]["original"],
"fidelity_maintained": benchmarks["fidelity"]["optimized"] > 0.8,
"resource_efficient": benchmarks["resource_usage"]["optimized"] <
benchmarks["resource_usage"]["original"]
}
return validations
circuit_analyzer = Agent(
name="Circuit Analyzer",
role="Circuit Analysis",
goal="Analyze quantum circuit structure",
instructions="Evaluate quantum circuit metrics",
tools=[analyze_quantum_circuit]
)
optimization_finder = Agent(
name="Optimization Finder",
role="Optimization Discovery",
goal="Identify optimization opportunities",
instructions="Find potential optimization techniques",
tools=[identify_optimization_opportunities]
)
optimizer = Agent(
name="Circuit Optimizer",
role="Circuit Optimization",
goal="Optimize quantum circuit",
instructions="Apply optimization techniques",
tools=[simulate_optimization]
)
benchmarker = Agent(
name="Performance Benchmarker",
role="Performance Analysis",
goal="Benchmark optimization results",
instructions="Measure performance improvements",
tools=[benchmark_performance]
)
validator = Agent(
name="Results Validator",
role="Validation",
goal="Validate optimization results",
instructions="Ensure optimization quality",
tools=[validate_results]
)
analysis_task = Task(
name="analyze_circuit",
description="Analyze quantum circuit",
expected_output="Circuit metrics",
agent=circuit_analyzer,
is_start=True,
next_tasks=["find_optimizations"]
)
optimization_task = Task(
name="find_optimizations",
description="Find optimization opportunities",
expected_output="Optimization opportunities",
agent=optimization_finder,
next_tasks=["optimize_circuit"]
)
optimization_execution_task = Task(
name="optimize_circuit",
description="Execute circuit optimization",
expected_output="Optimization results",
agent=optimizer,
next_tasks=["benchmark_performance"]
)
benchmark_task = Task(
name="benchmark_performance",
description="Benchmark optimization",
expected_output="Performance metrics",
agent=benchmarker,
next_tasks=["validate_results"],
context=[analysis_task, optimization_execution_task]
)
validation_task = Task(
name="validate_results",
description="Validate optimization results",
expected_output="Validation results",
agent=validator,
task_type="decision",
condition={
"True": "",
"False": ["find_optimizations"]
}
)
workflow = PraisonAIAgents(
agents=[circuit_analyzer, optimization_finder, optimizer,
benchmarker, validator],
tasks=[analysis_task, optimization_task, optimization_execution_task,
benchmark_task, validation_task],
process="workflow",
verbose=True
)
async def main():
print("\nStarting Quantum Algorithm Optimization Workflow...")
print("=" * 50)
results = await workflow.astart()
print("\nOptimization Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
print(f"\nTask: {task_id}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
asyncio.run(main())