What is Quantum Circuit Optimization?

Quantum circuit optimization is the process of improving quantum algorithms by reducing circuit depth, minimizing gate count, and enhancing execution efficiency while maintaining computational fidelity. This is crucial for making quantum algorithms practical on real quantum hardware.

Features

Circuit Analysis

Deep analysis of quantum circuit metrics including depth, gate counts, and qubit usage.

Optimization Detection

Identification of optimization opportunities through gate reduction and parallel execution.

Performance Simulation

Simulation of optimization results with improvement metrics and success probabilities.

Benchmark Testing

Comprehensive benchmarking of execution time, fidelity, and resource usage.

Result Validation

Validation of optimization results ensuring performance gains and fidelity maintenance.

Quick Start

1

Install Package

First, install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Key

Set your OpenAI API key as an environment variable in your terminal:

export OPENAI_API_KEY=your_api_key_here
3

Create a file

Create a new file app.py with the basic setup:

from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio

def analyze_quantum_circuit():
    """Simulates quantum circuit analysis"""
    circuit_metrics = {
        "depth": 15 + (int(time.time()) % 10),
        "gates": {
            "single_qubit": 25 + (int(time.time()) % 15),
            "two_qubit": 10 + (int(time.time()) % 8),
            "measurement": 5 + (int(time.time()) % 3)
        },
        "qubits": 8 + (int(time.time()) % 4)
    }
    return circuit_metrics

def identify_optimization_opportunities(metrics: Dict):
    """Identifies potential optimization areas"""
    opportunities = []
    if metrics["depth"] > 20:
        opportunities.append({
            "type": "depth_reduction",
            "potential": "high",
            "technique": "parallel_gates"
        })
    if metrics["gates"]["two_qubit"] > 15:
        opportunities.append({
            "type": "gate_reduction",
            "potential": "medium",
            "technique": "gate_decomposition"
        })
    return opportunities

def simulate_optimization(opportunities: List[Dict]):
    """Simulates optimization results"""
    results = []
    for opt in opportunities:
        improvement = {
            "high": 0.3 + (time.time() % 2) / 10,
            "medium": 0.2 + (time.time() % 2) / 10,
            "low": 0.1 + (time.time() % 2) / 10
        }
        results.append({
            "type": opt["type"],
            "improvement": improvement[opt["potential"]],
            "success_probability": 0.8 + (time.time() % 2) / 10
        })
    return results

def benchmark_performance(original: Dict, optimized: List[Dict]):
    """Benchmarks optimization performance"""
    benchmarks = {
        "execution_time": {
            "original": 100 + (int(time.time()) % 50),
            "optimized": 70 + (int(time.time()) % 30)
        },
        "fidelity": {
            "original": 0.9 + (time.time() % 1) / 10,
            "optimized": 0.85 + (time.time() % 1) / 10
        },
        "resource_usage": {
            "original": original["qubits"],
            "optimized": original["qubits"] - len(optimized)
        }
    }
    return benchmarks

def validate_results(benchmarks: Dict):
    """Validates optimization results"""
    validations = {
        "performance_gain": (benchmarks["execution_time"]["original"] - 
                           benchmarks["execution_time"]["optimized"]) / 
                           benchmarks["execution_time"]["original"],
        "fidelity_maintained": benchmarks["fidelity"]["optimized"] > 0.8,
        "resource_efficient": benchmarks["resource_usage"]["optimized"] < 
                            benchmarks["resource_usage"]["original"]
    }
    return validations

# Create specialized agents
circuit_analyzer = Agent(
    name="Circuit Analyzer",
    role="Circuit Analysis",
    goal="Analyze quantum circuit structure",
    instructions="Evaluate quantum circuit metrics",
    tools=[analyze_quantum_circuit]
)

optimization_finder = Agent(
    name="Optimization Finder",
    role="Optimization Discovery",
    goal="Identify optimization opportunities",
    instructions="Find potential optimization techniques",
    tools=[identify_optimization_opportunities]
)

optimizer = Agent(
    name="Circuit Optimizer",
    role="Circuit Optimization",
    goal="Optimize quantum circuit",
    instructions="Apply optimization techniques",
    tools=[simulate_optimization]
)

benchmarker = Agent(
    name="Performance Benchmarker",
    role="Performance Analysis",
    goal="Benchmark optimization results",
    instructions="Measure performance improvements",
    tools=[benchmark_performance]
)

validator = Agent(
    name="Results Validator",
    role="Validation",
    goal="Validate optimization results",
    instructions="Ensure optimization quality",
    tools=[validate_results]
)

# Create workflow tasks
analysis_task = Task(
    name="analyze_circuit",
    description="Analyze quantum circuit",
    expected_output="Circuit metrics",
    agent=circuit_analyzer,
    is_start=True,
    next_tasks=["find_optimizations"]
)

optimization_task = Task(
    name="find_optimizations",
    description="Find optimization opportunities",
    expected_output="Optimization opportunities",
    agent=optimization_finder,
    next_tasks=["optimize_circuit"]
)

optimization_execution_task = Task(
    name="optimize_circuit",
    description="Execute circuit optimization",
    expected_output="Optimization results",
    agent=optimizer,
    next_tasks=["benchmark_performance"]
)

benchmark_task = Task(
    name="benchmark_performance",
    description="Benchmark optimization",
    expected_output="Performance metrics",
    agent=benchmarker,
    next_tasks=["validate_results"],
    context=[analysis_task, optimization_execution_task]
)

validation_task = Task(
    name="validate_results",
    description="Validate optimization results",
    expected_output="Validation results",
    agent=validator,
    task_type="decision",
    condition={
        "True": "",  # End workflow if validation passes
        "False": ["find_optimizations"]  # Retry optimization if validation fails
    }
)

# Create workflow
workflow = PraisonAIAgents(
    agents=[circuit_analyzer, optimization_finder, optimizer,
            benchmarker, validator],
    tasks=[analysis_task, optimization_task, optimization_execution_task,
           benchmark_task, validation_task],
    process="workflow",
    verbose=True
)

async def main():
    print("\nStarting Quantum Algorithm Optimization Workflow...")
    print("=" * 50)
    
    # Run workflow
    results = await workflow.astart()
    
    # Print results
    print("\nOptimization Results:")
    print("=" * 50)
    for task_id, result in results["task_results"].items():
        if result:
            print(f"\nTask: {task_id}")
            print(f"Result: {result.raw}")
            print("-" * 50)

if __name__ == "__main__":
    asyncio.run(main())

Next Steps

Was this page helpful?