What is Research Analysis?

Research Analysis is a systematic process of analyzing scientific papers, identifying knowledge gaps, designing experiments, validating methodologies, and predicting research impact. This helps researchers make informed decisions about their research direction and experimental design.

Features

Paper Analysis

Analysis of research papers with topic identification and impact assessment.

Gap Identification

Discovery of research gaps with significance and potential evaluation.

Experiment Design

Creation of experimental methodologies with resource planning.

Methodology Validation

Validation of experimental design with statistical power and feasibility checks.

Impact Prediction

Prediction of research impact with novelty and breakthrough probability.

Quick Start

1

Install Package

First, install the PraisonAI Agents package:

pip install praisonaiagents
2

Set API Key

Set your OpenAI API key as an environment variable in your terminal:

export OPENAI_API_KEY=your_api_key_here
3

Create a file

Create a new file app.py with the basic setup:

from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio

def analyze_research_papers():
    """Simulates research paper analysis"""
    papers = [
        {
            "topic": "quantum_computing",
            "gaps": ["error_correction", "scalability"],
            "methodology": "experimental",
            "impact_factor": 8.5
        },
        {
            "topic": "machine_learning",
            "gaps": ["interpretability", "robustness"],
            "methodology": "theoretical",
            "impact_factor": 7.8
        }
    ]
    return papers[int(time.time()) % 2]

def identify_knowledge_gaps(papers: Dict):
    """Identifies research gaps"""
    gaps = []
    for gap in papers["gaps"]:
        gaps.append({
            "area": gap,
            "significance": "high" if papers["impact_factor"] > 8 else "medium",
            "research_potential": 0.8 + (time.time() % 2) / 10
        })
    return gaps

def design_experiment(gaps: List[Dict]):
    """Designs experimental methodology"""
    experiments = []
    for gap in gaps:
        experiments.append({
            "area": gap["area"],
            "methodology": {
                "type": "quantitative",
                "duration": "3_months",
                "resources_needed": ["equipment_A", "dataset_B"],
                "expected_outcome": "validation_metrics"
            },
            "priority": gap["significance"]
        })
    return experiments

def validate_methodology(experiments: List[Dict]):
    """Validates experimental design"""
    validations = []
    for exp in experiments:
        validations.append({
            "area": exp["area"],
            "statistical_power": 0.9 + (time.time() % 1) / 10,
            "resource_feasibility": 0.8 + (time.time() % 1) / 10,
            "ethical_compliance": True,
            "recommendations": []
        })
    return validations

def predict_impact(experiments: List[Dict], validations: List[Dict]):
    """Predicts research impact"""
    predictions = []
    for exp, val in zip(experiments, validations):
        predictions.append({
            "area": exp["area"],
            "potential_impact": val["statistical_power"] * 10,
            "novelty_score": 0.7 + (time.time() % 3) / 10,
            "breakthrough_probability": 0.5 + (time.time() % 4) / 10
        })
    return predictions

# Create specialized agents
paper_analyzer = Agent(
    name="Paper Analyzer",
    role="Research Analysis",
    goal="Analyze research papers",
    instructions="Review and analyze scientific papers",
    tools=[analyze_research_papers]
)

gap_identifier = Agent(
    name="Gap Identifier",
    role="Gap Analysis",
    goal="Identify knowledge gaps",
    instructions="Identify research opportunities",
    tools=[identify_knowledge_gaps]
)

experiment_designer = Agent(
    name="Experiment Designer",
    role="Experimental Design",
    goal="Design research experiments",
    instructions="Create experimental methodologies",
    tools=[design_experiment]
)

methodology_validator = Agent(
    name="Methodology Validator",
    role="Validation",
    goal="Validate experimental design",
    instructions="Ensure methodology validity",
    tools=[validate_methodology]
)

impact_predictor = Agent(
    name="Impact Predictor",
    role="Impact Analysis",
    goal="Predict research impact",
    instructions="Assess potential impact",
    tools=[predict_impact]
)

# Create workflow tasks
analysis_task = Task(
    name="analyze_papers",
    description="Analyze research papers",
    expected_output="Paper analysis results",
    agent=paper_analyzer,
    is_start=True,
    next_tasks=["identify_gaps"]
)

gap_task = Task(
    name="identify_gaps",
    description="Identify knowledge gaps",
    expected_output="Research gaps",
    agent=gap_identifier,
    next_tasks=["design_experiments"]
)

design_task = Task(
    name="design_experiments",
    description="Design experiments",
    expected_output="Experimental designs",
    agent=experiment_designer,
    next_tasks=["validate_methodology"]
)

validation_task = Task(
    name="validate_methodology",
    description="Validate methodology",
    expected_output="Validation results",
    agent=methodology_validator,
    next_tasks=["predict_impact"]
)

prediction_task = Task(
    name="predict_impact",
    description="Predict research impact",
    expected_output="Impact predictions",
    agent=impact_predictor,
    task_type="decision",
    condition={
        "high": "",  # End workflow if high impact
        "medium": ["design_experiments"],  # Refine if medium impact
        "low": ["identify_gaps"]  # Restart if low impact
    },
    context=[design_task, validation_task]
)

# Create workflow
workflow = PraisonAIAgents(
    agents=[paper_analyzer, gap_identifier, experiment_designer,
            methodology_validator, impact_predictor],
    tasks=[analysis_task, gap_task, design_task,
           validation_task, prediction_task],
    process="workflow",
    verbose=True
)

async def main():
    print("\nStarting Research Assistant Workflow...")
    print("=" * 50)
    
    # Run workflow
    results = await workflow.astart()
    
    # Print results
    print("\nResearch Analysis Results:")
    print("=" * 50)
    for task_id, result in results["task_results"].items():
        if result:
            print(f"\nTask: {task_id}")
            print(f"Result: {result.raw}")
            print("-" * 50)

if __name__ == "__main__":
    asyncio.run(main())

Next Steps

Was this page helpful?