from praisonaiagents import Agent, Task, PraisonAIAgents
import time
from typing import Dict, List
import asyncio
def analyze_research_papers():
"""Simulates research paper analysis"""
papers = [
{
"topic": "quantum_computing",
"gaps": ["error_correction", "scalability"],
"methodology": "experimental",
"impact_factor": 8.5
},
{
"topic": "machine_learning",
"gaps": ["interpretability", "robustness"],
"methodology": "theoretical",
"impact_factor": 7.8
}
]
return papers[int(time.time()) % 2]
def identify_knowledge_gaps(papers: Dict):
"""Identifies research gaps"""
gaps = []
for gap in papers["gaps"]:
gaps.append({
"area": gap,
"significance": "high" if papers["impact_factor"] > 8 else "medium",
"research_potential": 0.8 + (time.time() % 2) / 10
})
return gaps
def design_experiment(gaps: List[Dict]):
"""Designs experimental methodology"""
experiments = []
for gap in gaps:
experiments.append({
"area": gap["area"],
"methodology": {
"type": "quantitative",
"duration": "3_months",
"resources_needed": ["equipment_A", "dataset_B"],
"expected_outcome": "validation_metrics"
},
"priority": gap["significance"]
})
return experiments
def validate_methodology(experiments: List[Dict]):
"""Validates experimental design"""
validations = []
for exp in experiments:
validations.append({
"area": exp["area"],
"statistical_power": 0.9 + (time.time() % 1) / 10,
"resource_feasibility": 0.8 + (time.time() % 1) / 10,
"ethical_compliance": True,
"recommendations": []
})
return validations
def predict_impact(experiments: List[Dict], validations: List[Dict]):
"""Predicts research impact"""
predictions = []
for exp, val in zip(experiments, validations):
predictions.append({
"area": exp["area"],
"potential_impact": val["statistical_power"] * 10,
"novelty_score": 0.7 + (time.time() % 3) / 10,
"breakthrough_probability": 0.5 + (time.time() % 4) / 10
})
return predictions
paper_analyzer = Agent(
name="Paper Analyzer",
role="Research Analysis",
goal="Analyze research papers",
instructions="Review and analyze scientific papers",
tools=[analyze_research_papers]
)
gap_identifier = Agent(
name="Gap Identifier",
role="Gap Analysis",
goal="Identify knowledge gaps",
instructions="Identify research opportunities",
tools=[identify_knowledge_gaps]
)
experiment_designer = Agent(
name="Experiment Designer",
role="Experimental Design",
goal="Design research experiments",
instructions="Create experimental methodologies",
tools=[design_experiment]
)
methodology_validator = Agent(
name="Methodology Validator",
role="Validation",
goal="Validate experimental design",
instructions="Ensure methodology validity",
tools=[validate_methodology]
)
impact_predictor = Agent(
name="Impact Predictor",
role="Impact Analysis",
goal="Predict research impact",
instructions="Assess potential impact",
tools=[predict_impact]
)
analysis_task = Task(
name="analyze_papers",
description="Analyze research papers",
expected_output="Paper analysis results",
agent=paper_analyzer,
is_start=True,
next_tasks=["identify_gaps"]
)
gap_task = Task(
name="identify_gaps",
description="Identify knowledge gaps",
expected_output="Research gaps",
agent=gap_identifier,
next_tasks=["design_experiments"]
)
design_task = Task(
name="design_experiments",
description="Design experiments",
expected_output="Experimental designs",
agent=experiment_designer,
next_tasks=["validate_methodology"]
)
validation_task = Task(
name="validate_methodology",
description="Validate methodology",
expected_output="Validation results",
agent=methodology_validator,
next_tasks=["predict_impact"]
)
prediction_task = Task(
name="predict_impact",
description="Predict research impact",
expected_output="Impact predictions",
agent=impact_predictor,
task_type="decision",
condition={
"high": "",
"medium": ["design_experiments"],
"low": ["identify_gaps"]
},
context=[design_task, validation_task]
)
workflow = PraisonAIAgents(
agents=[paper_analyzer, gap_identifier, experiment_designer,
methodology_validator, impact_predictor],
tasks=[analysis_task, gap_task, design_task,
validation_task, prediction_task],
process="workflow",
verbose=True
)
async def main():
print("\nStarting Research Assistant Workflow...")
print("=" * 50)
results = await workflow.astart()
print("\nResearch Analysis Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
print(f"\nTask: {task_id}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
asyncio.run(main())