Skip to main content

Knowledge Storage

Knowledge uses vector stores to index and retrieve documents. Choose the right backend for your use case.

Quick Setup

from praisonaiagents import Agent

# Default: Chroma (zero-config, local)
agent = Agent(knowledge=["docs/"])

# With specific provider
agent = Agent(
    knowledge={
        "sources": ["docs/"],
        "vector_store": {
            "provider": "qdrant",
            "config": {"url": "http://localhost:6333"}
        }
    }
)

Supported Vector Stores

Choosing a Vector Store

Use CaseRecommendedWhy
Local developmentChromaZero config, embedded
Production (hosted)PineconeManaged, scalable
Production (self-hosted)Qdrant/WeaviatePerformant, open-source
PostgreSQL stackPGVectorSame infrastructure
EnterpriseMilvusHigh availability

Configuration Examples

agent = Agent(
    knowledge={
        "sources": ["docs/"],
        "vector_store": {
            "provider": "chroma",
            "config": {
                "collection_name": "my_docs",
                "path": ".praison/chroma"
            }
        }
    }
)